L T R R R R R R

AD-A179 308 “RerorT DocHENTATION FAGE

1b. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

N unlimite?
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

, 4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
The Regents of the University (If applicable)
of California SPAWAR

6¢c. ADDRESS (City, State, ard ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Berkeley, California 94720 Space and Naval Warfare Systems Command

Washington, DC 20363-5100

8a. NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)
DARPA (lileec? Noo039-F4-C-0087

8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS i
1400 Wilson Blvd. PROGRAM PROJECT TASK WORK UNIT
Arlington, VA 22209 ELEMENT NO. [NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)
Optimization of Extended Relational Database Systems

*

12. PERSONAL AUTHOR(S) . -

i Timoleon K. Seliis

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF RERPOR r, Month, Day) [1S. PAGE COUNT
technical FROM 10 * 3ufy Rf.ﬁ, TléY§5 * 162

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Enclosed in paper.

DTIC_

ELECTE
APR 2 1§987

b E
x'l) . e

20. DISTRIBUTION/ AVAILABILITY OF A8STRACT 21. ABSTRACT SECURITY CLASSIFICATION
B UNCLASSIFIEDUNLIMITED [SAME A3 RPT. OloTic users | unclassified
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) | 22¢c. OFFICE SYMBOL

DD FORM 1473' 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.

T e R ST e P T T 5 i
T o A AN Y P (R B T S e T R N P P T T 5 I Y CONL AR ¢ & T T T P R S SR T PP .
Y L Y . . . L R . . . ~

eliniie. _mhEERL . i) e N —— .

Productivity Engineering in the UNIXt Environment

Optimization of Extended Relational Database Systems

Technical Report

S. L. Graham

Principal Investigator

(415) 642-2059

“The views and conclusions contaired in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied,
of the Defense Advanced Research Projects Agency or the U.S. Government.”

Contract No. N00039-84-C-0089

August 7, 1984 - August 6, 1987

Arpa Order No. 4871

$UNIX is a trademark of AT&T Bell Laboratories

T Ta T T T LT T T U U AT D A T L T L T L G R L OUAL AR

Accession For

[NTIS GRA&I

DTIC TAB

Unannounced O
Justifieation _]

By

Distribution/
Availability Codes
m |Avail and/or

Dist | Special

Al

R

OPTIMIZATION OF EXTENDED RELATIONAL DATABASE SYSTEMS

by
Timoleon K. Sellis

Memorandum No. UCB/ERL M86/58
23 July 1986

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

WP ere L 4

[3
A R A A AT T SN 0 O S R L I A L R L LR e N S N A R 1 R e e A A T N N S T A A A AR R R A R SR R R L [R .

Optimization of Extended Relational Database Systems
Copyright © 1986
Timoleon K. Sellis

All Rights Reserved

This research was sponsored by the Navy Electronics Systems Command under contract
NOOO39-84-C-0089.

A A R T T T L P P T o S R e S R R e AT LT T T A 0 b R N R L L AP A P O s A T N ¢ -(‘-"(j

Optimization of Extended Relational Database Systems

Ph.D. Timoleon K. Scllis Computer Science Division
Department of EECS

Prof. Michael'R.
Committee Chairman

ABSTRACT

Current relational Database Management Systemi((DBMS)'—:nust be extended to
function well in Engineering and Artificial Intelligence applications. Various addi-
tional functionalities have been proposed and in this thesis we study the o.ptimization
of one extended environment. Specifically, we consider the optimizatiod of a version

of the QUEL query language extended with two new features:
o the repetitive execution of commands; snd

e the execution of relation fields in which collections of QUEL commands are

stored.

An extended query processing algorithm based on the original INGRES 2-compositiod
algorithm is first presented and then various modifications aiming to improve its per-
formance are suggested. Caching of query results is also considered as apother means
to improve the performance of the processing engine. Ve analyze and sugg~! solu-

tions to the various problems related to the design of a query result cache {repiace-

''''''''

L Lo e e oM s Bl B T R A W R B T TN RS PEEESIRm—————.

-~

ment policies, invalidation techniques, etc).

Based on the above extensions, a relation field may contain more than one QUEL
commands. Accessing such a field triggers the execution of all these commands. We
present a set of tactics that can be used to reduce the cost of processing multiple com-
mands using some interquery analysis. Special cases amenable to different kind of pro-

cessing are also identified and studied.

In the case where all commands stored in a field are retrievals from the database,
sharing of accessed data is possible. We study the optimization of processing a set of
queries in detail, by deriving efficient access plans which take advantage of common
intermediate results. Experimental results are also given in support of the proposed
algorithms. These results show that significant savings (up to 50%) can be achieved

by sharing common data.

)
f

T L T e T T) G A T e A e W T Vel S e S N R T TOTR RO T I SN R L Flp =g 7 BT A, g gy Ty oy g e

e e e e e e e iR By S —— o - . T S S Sy N W g L — . s

Acknowledgements

The effort put into producing this thesis was a result of continuous encourage-
ment and support by my beloved wife, Marilena. Understanding, patience and strong
belief in me were reflected in her life all these years. More than that, she has offered
me the most valuable gift bridging career and life: our sweet daughter, Stefania. A
new meaning for life and a hope for a better tomorrow. For all these, Marilena

deserves my deepest love and admiration.

My parents gave me the initial directions in life and continued to remain close to
me through joys -nd sorrows. | am deeply grateful for their continuous support and
only hope that I have fulfilled their expectations and added joy to their life. This
thesis is the result of my first major effort in life. In recognition to their support, it is
dedicated to them.

My advisor Prof. Michael Stonebraker deserves my warmest thanks for his con-
tinuous encouragement. During the last three years he has been my major source of
unlimited suppert. In addition to his ability of giving constructive criticisms on every
aspect of my academic life, he was always there, ready to help as a real friend. I have
been very fortunate to benefit from his experience and technical skills and for all these

he deserves my deepest and true gratitude.

Yannis loannidis, my ‘‘twin brother”, is not just a colleague. He is the person |
.worked with, days and nights, for our undergraduate thesis. The person with whom I
shared, more than a house, all my first experiences with graduate studies at Harvard.
Without his kind willingness to offer me sincere and rigorous criticisms on my research
work, this thesis would not have existed. He is, and will always be, a real friend and [
am truly sorry our parallel journeys will have to be temporarilly interrupted with our

nDEew careers.

In addition to my advisor and rannis, the whole INGRES group deserves my
wholeheartedly thanks. Prcfessors Eugene Wong and Lawrence Rowe were always
there when I needed their valuable opinion and criticism. Margaret Butler, Eric Han-
son, Brad Rubenstein, Oliver Gunther, Toni Guttman, Margie Murphy and many oth-
ers offered me their unlimited support through stimulating discussions on my research
work. Joe Kalash and Jeff Anton were the enlighteners for all my problems with the
INGRES software. My collaboration with Leonard Shapiro was very pleasant espe-
cially because it resulted to my first publication. | am really happy I had the oppor-

tunity to work with all of my colleagues and wish to thank them all for their support.

W " '~ n AT TR Ly G S - \r"u"-'\‘ \
QL'" § \-L\!{*' :{\ - \) <\. AT } & 'c\'iﬂ,'(a_-("c':fti‘-_-’zv":Z-‘\V'.L-(.-({« ‘?* "- P".:"' » -P"- '(-. » u('n'i\. -'." %'» '(' "\. ﬂ '. -, ‘\“- I“ x“.i \ﬂ. n“

s

Finally I would like to express my thanks to Professors Eugene Lawler and Jack
Silver for their kind interest to serve in my thesis committee and the U.S. Air Force
Office of Scientific Research for supporting this research under the grant number 83-
0254.

Timos Sellis
July 1986

- B R I N R ™ i T o ol - it S N ST~ SR G L S M R T o o o
A Te N e T ol e P a T T o TnVin Y oot Do n it d Tou '°.'r..'-$'u‘,.'~\.\{."-".

LA R RS R R A BER T R 8

Table of Contents

Dedication ...c.ccceiiiiiiiiiicieiieeiiete ettt v b e ere e ere s eseane
Acknowledgementsccooeviiiiiiiiiiiiiieiie et et saaons
Table of Contentsccoevceriiiiiriiirincteee s cae et
List of FIGUIES ...cccoiiiiiiiiiriieeectietettetetes veererreesseettenseeesressresnneseanressssons
1. INTRODUCGTION ...c.ooooiiiiiiiiiiiniiienienenteestesteseesvestsesseseesesnseseeessesneesens
1.1. Why Database Management Systems?ccccccoouvimeicrciniiciricrnencnninennen
1.2. Extending Database Systems Using Proceduresccccccovuvvvenvrernrnnnnnen.
1.3. Outline of THESIScccocvevieirrieiiiiiteienieieietestee ettt veve e eeene

2. QUEL+ : THE LANGUAGE AND HOW TO PROCESS
QUERIES ..ottt sttt et te st s e ere e e eas e s sasenns

2.1, INtrodUCtIONocveiiiiiiiiiiiiieteeeie ettt ettt seeeesaeeaeenns
2.2. The Query Language QUEL+ccoooeiieieerieeecececeecee e
2.3. Processing QUEL4 ..ccoiuiiiiciieeeee ettt ae s
<.4. Caching Materialized QUEL Fieldsccooevevvevviiciiriie e,
2.5. Indexing Results of QUEL Fieldsccooevveveeveviiciiiieiecieeceeeeeee e

2.8, SUIMINATY ..ooiiiiiiiiiiieieieie et steete e st e eae e e e s et sabeseseecsnae s et aesssnese

v

vi

10

i4

14

15

22

38

53

60

62

62

R e o G ™ i e T e T s T N e e e P e e e A T N R R T T T R R T R T TS BT e T T W e " M

A\

3.3. Compiler Design TechniQUesc.cccevveveveiriiceicrieiiicnereseeeee e ceeeee e 68
3.4. Query Optimization TechniQuescccoovveeveveeiieiriinreinenreeeree e e eneeane 73
3.5. Some Special Case Transformationsccececeevveeerevivieerverviseeneesrernnnns 82
3.8, SUIMIDATY .ooviiiiiiiiiiiiiteiiteesiieeeeeeeecesieeveesresse e areosresnsseseseessneessnseeesesnnessnes 89
4. MULTIPLE QUERY OPTIMIZATIONcooovirirrreeeeceeneceeeererne, 91
4.1, IDtroductionceiiiiiiicecce e e s 91
4.2. Previots WOrK ...ccocoovieiiieniiniiinieie et sttt sresre s s sres e 94
4.3. Formulation of the Problemcccocovimimniiieieiiicccece e 98
4.4. A Hierarchy of AIZOFIthImScccccviiiiiiriiieicec e 103
4.5. Serial EXECULION ...c.ceoviiiriiiiiiceentitce ettt e 107
4.6. Decomposition AIZOrithInccceeeieiireriirieierieieece et s 114
4.7. Heuristic AlgOrithmc.cccoeiiiiiiiiiiiecee e 121
4.8. Some Experimental Resultscccoooiiiiiiiiiiiiiieieee e eee e eseseveenns 134
4.9, SUMIATY oeoceiieireirieeieiiirernrersrreenreeesteceeesaeesee st eeessteeseesten e sessessseesnsessnses 143
5. CONCLUSIONS AND FUTURE DIRECTIONScccoevvvveveeeennne. 145
5.1. Summary of ThesiS ...coociviiviiieiiii ettt se e e e eens 145
5.2. Future DIrectionscccooevuiveruioienieeeee ettt ee e 148
BIBLIOGRAPHY ..ottt et esee e se e seesenennen 151
APENDIX A ..ottt ettt ettt s e e e ee e 160

A RIS NS R s e o U P T R I T e R e g N T T g e N R Py o D N W e e UL TP T RO e W e % T R)

List of Figures

Figure 2.1: Extended Decomposition StPategycceeeeeeveveereeerereeresseoeesssesoens 23
Figure 4.1: Multiple Query Processing Systems Architectureoovve..... 96
Figure 4.2: Example of an Access Planccccoevvieiieeeeireneereseeeseevennns 101
Figure 4.3: A Hierarchy of Multiple Query Processing Algorithms 104
Figure 4.4: QG Graph for Queries Qg 20d Qg oot 112
Figure 4.56: QG Graph for Queries Q) a0d Qg v 113
Figure 4.8: Basic Merge OPerationcoeoeeveeeeeeeereesveresoressesssssesessos s 116
Figure 4.7: Initial Global Access Planccooeveeeueeieeereeerereeeeseeeeveeeeereeeon, 119
Figure 4.8: Global Access Plan after Transformation [1]cccccoevuevueunnnnen... 119
Figure 4.9: Final Global Access Planccoooueueeeeeeeeeeeeeeeeeeeseeeseesees e 120
Figure 4.10: Example Search Space for A* Algorithmcocovvevevevvrernnn... 126
Figure 4.11: Graph G for Queries Q, and Q, e e 129
Figure 4.12: Final Graph G/ccoooovviiiiiiiiis oo 130

Figure 4.13: Performance Improvement for Unstructured Relations (Query
Sets 1,2 a0d 3) ..ot s es e e 138

Figure 4.14: Performance Improvement for Unstructured Relations (Query
Sets 4,5 ARA B)ooceriiiiiitiite e, 138

Figure 4.15: Performance Improvement for Unstructured Relations (Query
SEL T) ottt e eae e T, N 138

vi

iy s WMo AP Wty B R e S e e A AN p_\ “ _.-."v-‘w‘h‘p‘.- R
}\""vﬂ h‘-{": -\r \’\'\\{’&{\{" t'\L. T "\{“ '\“."'\. L. \‘\'\.'{.n‘. \‘\&A.“.-, '&‘_’{.«.":x.'(.:\‘ w: x“x*r\"‘ b '(-Wm“- W ¢’\-«\»7 =t ‘ﬂx e N P T i o

vii

Figure 4.16: Performance Improvement for Unstructured Relations (All
QUETY SELS) ..ttt ettt ettt sre et bs st ste e eaesesseteseasessassens 138

Figure 4.17: Performance Improvement for Structured Relations (Query
Sets 1,2 and 3) .ottt 141

Figure 4.18: Performance Improvement for Structured Relations (Query
Sets 4,5 B0A B) .c.eoveeniiiiiiei ettt et e e eeens 141

Figure 4.19: Performance Improvement for Structured Relations (Query
SEL T) iverinssisnsearmimmosmsncnssussssasiarassuss shtneeusisosensaensassesionaissossstassusssamasassssssssssse 141

Figure 4.20: Performance Improvement for Structured Relations (All Query
SOES) ottt ettt ettt r ettt e s et et e e e e neeeeens 141

Figure 4.21: Performance Improvement for Higher Sharingceceeeneeneeeen. 143

A D e o ok R T e TR e T e e T e e e T e L SN e e Y Y Ptk T S Pt p)

CHAPTER 1

INTRODUCTION

Traditionally Database Management Systems (DBMS| have been used in business
applicatious to efficiently store and organize large amounts of data. The main thrust
of database research has focused on designing data structures and algorithms
[WONG76,SELI79] so that operations, common in this environment, can be processed
efficiently. Recently, there has been considerable interest in extending the use of data-
base management systems into new application areas. In particular, relational DBMSs
[CODD70] have been used in support of applications such as text processing
[PAVL83,STON83|, computer graphics [LORI79], Computer Aided Design (CAD)
[LORI81,KATZ82,LORI83,GUTTS84b), Artificial Intelligence and Expert Systems
[KERS84,KERS86). The main difference between the busines: applicaticas and :he
ones mentioned above lies in the type of information that the two types of applications
are using. Business applications are mainly concerned with large volumes of data ,
while As:ificial Intelligence or Engineering Applications usually involve a sophisticated

control mechanism that handles relatively smaller amounts of data. Therefore, a sys-

tem of the second type should be able to support storing and handling control infor-
mation in addition to data. Our interest is to investigate the possibility of extending

current relational database management systems to support storing information of

both kinds.

e e T A Rt e T e A, R e O o B O R T B T o R R R R G R R LR R AL LY A AL VR A PR AP G AT L L P PR A ¢

-_z‘(g

»

to

1.1. Why Database Management Systems?

Using a data manager with full capabilities offers the advantages of better data
organization, simple user interface, integrity of data in multi-user environments
[BERN79,CARE84] and recovering from hardware or software crashes [GRAY78).
Given these advantages, there have been various attempts to build systems that sup-
port non-traditional database applications over large volumes of data. In general,

there are three different approaches that can be taken

e One can enhance a specific application system (e.g. VLSI design system) with a

specialized data manager
e One can snterface a specific application to a general purpose DBMS

e Finally, one can cztend a general purpose data manager by enhancing it with

more sophisticated capabilities (e.g. inference, triggers, etc).

The first approach suffers from two major disadvantages. First, considerable
effort must be put into designing =nd building several modules that DBMSs already
include (data definition and data manipulation facilities, query processing algorithms,
etc). Second, such specialized data managers are very narrow, in the sense that they
cannot be easily modified to support applications other than the ones, for which they

were originally written.

In the second approach there is a clean interface between a specialized applica-
tion program and a general purpose DBMS. The DBMS acts as a server to the appli-
cation program by supplying on demand the data that the latter requires. However,

the major disadvantage of this approach lies in the difficulty to define exactly where

)
o
1
2
......... "

o e SR o n o e R T i L e] Y s g et e B e Y N e O O U T T P e)

the two systems must be interfaced. As an example, consider the problem of interfac-
ing PROLOG [CLOCS81] with a general purpose DBMS. Although that interface
appears particularly natural, due to the common theoretical foundations of the two
environments, attempts to build such an interface have not been very successful
because of the differences in the way each system retrieves its data
[WARR81,JARK84a,CERI86)]. These attempts to interface PROLOG and general pur-
pose DBMSs make significant changes to the PROLOG query processor trying to
improve its performance in an environment where data resides in secondary storage.

[BROD84,ZANI84,SCIO84] provide good criticisms of this approach.

Because of the above mentioned difficulties, data managers with extended capa-
bilities have been proposed. In this third approach data manipulation and control
functions are integrated into a single system in a homogencous way. As a first exam-
ple, consider previous work in supporting various semantic data models
[MYLOS80,SHIP81,ZANI83]. In all these proposals several new constructs were intro-
duced (general objects, classes, unnormalized relations, set-valued attributes, etc).
Another similar approach is to design systems based on the object oriented program-
ming paradigm [COPE84,DERR86). The data manager stores objects that a general
program can then fetch and store. Both of these approaches how«ver suffer from two
major disadvantages. First, due to the incompatibility bet ween the needs of the vari-
ous application environments, it is very hard to incc. surate all of the above mentioned
constructs in a single data manager. Such a system would be extremely complicated
and, most probably, inefficient. A second disadvantage is that a complete database

manpagement system must be written from scratch. For example, a query optimizer is

LB P RN GRS R N i N N S R L NN O L P L o e I e O 1 S e i T e e e I R A S N TG A R Ve L S S M A e ®

needed to support queries. A transaction management system is needed to support
shared access and to maintain data integrity in case of software or hardware crashes.
Clearly, these modules account for a large fraction of the code that already exists in

current DBMSs.

Looking at a different direction, several researchers have proposed other ways of
extending relational DBMSs. The basic idea is to come up with a simple system that
gives to the user the capability to build on top of a basic set of functions whatever
constructs are required by specific applications. Moreover, it has been assumed that
minimal extensions to the relational model should be attempted. An example of such
an effort has been Deductive Databases [GALL78]. The direction here is to provide
basic support for expert systems applications. In a deductive database sys:em both
deductive aspects of the world (rul:s) and asserted information (facts) are stored in
the same system. The framewcrk represented by logic programming [KOWAT4| and
typified by the programming language PROLOG, is used as a common example. How-
ever, because of the problems mentioned above, various researchers have been engaged
in designing extensions of DBMSs instead of trying to interface PROLOG or a general
inference engine to a data manager. In [IOAN84,DAYA85 ULLM85,ZANI85] several
designs for database systems enhanced with inference capabilities are proposed, each
being a specific implementation of the above model of rules and facts. In particular,
these systems are distinguished based on the representation they adopt for rules. This
approach has been rather successful, the main reason being that relational database

systems require minimal extensions tc support inference.

Rules have been used in deductive database systems to allow users to incorporate
control information in a form other than the simple operators that the relational
model offers (e.g. selections, joins, etc). In general, control irformation can be
represented procedurally and/or declaratively. A database can be clearly used for the
latter. As a final approach to building extended data managers, the following section

describes the idea of extending DBMSs based on the use of procedures.

1.2. Extending Database Systems Using Procedures

Stonebraker et. al. proposed in [STON84| the idea of storing database commands
in the database as a means for increasing the functionality of the system. Commands
are stored in relation fields and can be accessed as any other field using a slightly
extended query language. Moreover, since these commands can be executed, a new
operation is introduced allowing a user to execute the contents of relation fields. In
that sense, it is suggested that database procedures are considered as full fledged data-
base objects. Hence, using this extension of [STON84|, the database can be made the
single source of information, either procedural or declarative. This is the approach we

will take in this investigation also.

To motivate the use of procedures for increasing the functionality of a relational

data manager, we give some examples of possible applications.

e Storing Programs in a Database

In many applications that use data residing in a database there is a need for code
written in the data manipulation language of the DBMS, i.e. database programs.

These programs can be stored in the database and then be executed using the DBMS

»

R T Rt I N A N A T R L A o T RN A R A

query language. For example, in [KU!G84] it was shown how a problem like heuristic
search can be addressed using such au extended database management system. There,
a relation ALGORITHMS(alg_id, alg_type,code) was used, where alg_id is a unique
identifier, alg_type indicates the general class that tke given algorithm belongs to (e.g.
Dynamic Programming, Branch and Bound, etc.) and code is a field used to store the
database procedure that implements the algorithm. Therefore the form of the relation

ALGORITHMS will be

alg_id alg_type conde

10 Dynamic Progr. code lipe 1

code line 2

15 Dynamic Progr. code line !

20 Branch and Bound code line 1

The syntax of the DBMS allows the user to select and execute an algorithm based on

its alg_id and alg_type. Such a syntax may for example be
execute (ALGORITHMS.code) where ALGORITHMS alg_id = 1§

which will select the Dynamic Programming algorithm with id=ntifier 15 and will pro-

cess the commands that constitute the body (code).

PR L |

. 1 - e & - 3 e ; “n - s L e . PR “w) R
TR i N i i Tl e T T T e R Oty W)

e Supporting Rules

Suppose a relation EMP (name,salary,age), with the obvious meanings for its fields,

and another relation CATEG_EMPS with the following contents

status emps

wellpaid | retrieve (EMP name)
where EMP.salary > 80

retrieve (EMP.name)
where EMP . salary > 60 and EMP. age < 30

retrieve (EMP.name)
vhere EMP salary > 65 and EMP age < 40

underpaid | retrieve (EMP name)
where EMP salary < 20

are given. This second relation gives a way to categorize employees according to their
salaries or salaries and ages. In some sense it is a set of rules that define when an
employee is wellpaid, underpaid, etc. asking for wellpaid employees would

then be
retrieve (CATEG_EMPS.emps.name) where CATEG_EMPS status = 'wellpaid®

where the reference to CATEG_EMPS emps.name will first evaluate the queries stored in

the emps field of CATEG_EMPS and then project the result of this evaluation on the

TR, §Y ~

’ S L RO N A OAC Y L W L SRy N W Lt e A T A L Y
e T o T T T h N e T S T L L R N W N e T e R e b e S

name column. More complicated rules can be expressed using the full capabilities of
the query language. In addition, general condition-action rules can be defined, since a
procedure in a relation field may include update operations as well. Actions can be

then implemented through updates to other relations in the database.

e Supporting Complex Objects

Complex objects can also be implemented using database procedures. A query expres-
sion in a relation field simply describes the way components of other relations (i.e.
tuples) are combined to build an instance of a more complex object. As an example,
suppose we have a relation POINTS(x,y) describing points on the plane. Another
relation LINES(line_id.description) can then be defined, where description is a

field containing expressions of the form

range of POINT,POINT1 is POINTS
retrieve (POINT. x POINT y, POINT! x,POINT1 y) where Qualification

Qualification describes how the two points POINT and POINT1 that define a line
segment are selected from the POINTS relation. A significant advantage of using pro-
cedures for the definition of complex objects is the ability to allow many objects to
share the same subobjects. Hence, a hierarchy of objects can be built and inheritance

is free since it can be naturally achieved through retrievals of data from the same rela-

tions [STONSS].

It is clear from the above examples that supporting procedures in a DBMS is of
significant importance. POSTGRES [STONS6b], a new relational DBMS under

development at the University of California, Berkeley, will support procedures as full

fledged database objects. Among other capabilities, the user of POSTGRES can mani-
pulate data, define rules, specify triggers and alerters, etc., using only the extended
query language that the system provides (POSTQUEL). However, preliminary results
in [STON8S| show that there is a serious degradation in performance for non-standard
data retrieval operations. In addition, there is a need in modifying algorithms that
work efficiently in a main memory based system, to algorithms that will work
sufficiently well in a database environment [KUNG84,SELL85]. The purpose of this
investigation is to study these problems and suggest techniques that improve the per-

formance of extended database management systems.

Optimizing the execution of procedures will be a significant part of this work.
Procedures are simply sequences of database commands. However, these commands
do not have necessarily to be processed one at a time. Some interquery optimszation
is possible, leading to a more efficient execution. For example, in the special case of
read-only procedures where only retrieval commands are used, savings can be achieved
by means of common data that the queries may access. In the employee example men-
tioned above, determining which employees are wellpaid, requires the execution of all
three queries stored under the emps field of CATEG_EMPS. When processing these
queries the intermediate result built for answering the second request and containing
the tuples of employees with salaries more than 80K can be used to answer the first
query on employees with salary more than 80K. This way the second look-up of the

EMP relation is avoided.

Some researchers have studied in the past the problem of multiple query (i.e. pro-

cedure) optimization or other related problems. In [GRAN80] and [GRANS1|, Grant

- - <, G . a_ = - AP e T et kT AT A AP e P TN g T
S A R e P L S el o S R S A R S L AT R UL RL TR G AR S B B N Vs BUR N g T Nl P e Jgl ol i Tore B 8 0 o B el W]

10

and Minker describe the optimizatiou of sets of queries in the context of deductive
databaces. Roussopoulos in [ROUS82a] and [ROUS82b] provides a framework for
interquery analysis based on query graphs [WONG76], in an attempt to find fast view
processing algorithms. More recently, Chakravarthy and Minker [CHAK82,CHAKSS)
have suggested an algorithm based on the conmstruction of integrated query graphs.
All of the above proposals assume procedures to be sets of retrieve-only commands.
When updates are allowed, different techniques must be used. We propose such tech-

niques in later chapters of this thesis.

1.3. Outline of Thesis

In the remainder of this report we investigate, analyze and solve problems associ-
ated with extended relational database management systems. Although the discussion

is restricted to the INGRES [STONT78] relational DBMS, the ideas are generally appli-

cable to other systems as well.

Chapter 2 begins by describing QUEL+ [STONSS], an extension to the query
language QUEL used by INGRES. QUEL+ introduces two new features. First, a new
operator that allows repetitive execution of database commands is introduced. This
way, iterative constructs can be embedded in database procedures. The second
feature introduced, is the ability of the system to support procedures by means of
storing query language expressions in relation fields. Chapter 2 then continues with a
detailed discussion on how query processing should be done in light of these exten-
sions. A variation of the original INGRES decomposition algorithm [WONGT76] is first

presented. Then various improvements to this algorithm are discussed. These

m~ TR » - Ay T v . Y ol ek I AR g = Sy gL » il o L Ty F ',‘
R N O R S T e N T s H O A e N T e R A T e R A A LR L R R SR P TR G
Wl Tty - - - - - - - - P it - 3 - » - o ’

e e S

AT R TWE N e

11

improvements aim st producing more efficient access plans for some special classes of

queries.

The query processing algorithm deals only with the problem of generating
efficient access plans. to process a given query. Other ideas that can improve the per-
formance of a system that supports procedures are also discussed in Chapter 2. First,
we examine the idea of storing results of previously processed procedures in secondary
storage. That idea is called caching of procedure results [STON8S5). Using a cache,
the 1/O and CPU cost of processing a query can be reduced by preventing multiple
evaluations of the same procedure. Problems associated with cache organizations are
examined in depth. Policies for replacing entries of the cache with newly produced
procedure results along with algorithms that decide if a given result should be cached,
are discussed. How.ever, results of procedures may become invalid when relations used
in the evaluation of a procedure are updated. The problem of checking the validity of
cached entries is also examined. Finally, schemes for efficient searching of the cache

are discussed.

Another means for reducing the execution cost of queries is indexing. Indexes are
used in DBMSs to provide efficient access to relations. When procedures are
evaluated, the fields of the resulting relations can also be indexed. However, at any
given time, it is highly probable that not all procedures stored in a relation have been
evaluated. Therefore, a conventional indexing scheme cannot be used, for it would
assume that ali values resulting from the execution of procedures are known. As a
solution to that problem, a new indexing scheme, Partial Indexing, is proposed and

analyzed. A partial index contains information only on results of procedures that have

B R A A N R LT B B RS T 000 G0 et SN R Tt i RS e e S Sl S L R R R

Pt AT AP A tp TN
PN TN T T LY

N

been materialized in the pait. Uses of partial indexes in conventional database sys-

tems are also described.

Chapter 2 deals with the problem of efficiently processing queries that reference
results of procecures. These procedures are simply sequences of database commands.
How to efficienti, process the procedures themselves is also an interesting issue. It was
mentioned in the previous section that some interquery optimization is possible.
Chapters 3 and 4 investigate this problem and propose algorithms for processing mul-
tiple database commands. Chapter 3 examines general database procedures where
update as weil as retrieval operations are possible. Several transformations and
optimization techniques are suggested. Some of them are drawn from the area of com-
piler design where similar problems have been examined in the context of general pro-
gramming languages (e.g. moving loop invariants out of loops). Others are extensions
to conventional query processing or physical database design techniques. Cases where
special transformations are possible are also identified and studied. Although such
transformations are not applicable to all kinds of procedures, they are ver; important

to several engineering applications (KUNG84].

Chapter 4 studies a special case of procedure optimization, where only retrieval
commands are used. In this case, savings can be achieved by means of common data
that the queries may access. The model that will be assumed for queries is first
described and then an analysis of several algorithms that perform some interquery
analysis and suggest efficient access plans is given. These algorithms differ in the
amount of time one is willing to spend to preprocess a given set of queries. There is a

trade-off between the time required for interquery optimization and the actual cost for

L L S L L A T LS L A A A LS LT L U AL A LR T g LR N T R M M N R e 0 e T T R AL T A L e s m ey i e e e g L

13

executing the .jueries. Such issues are also discussed in depth. We then present some
experimental results that show that multiple query optimization is useful and can
significantly improve the performance of systems that support database procedures.
Finally, in Chapter 5, a summary of our results is given along with some discussion on

important problems for future research.

\
. 1 MmN AT [T NP Y 1 LB T W BB o T L T P 0 P SRR T SR S A BT TR VT S e R S N A L W R T TR TR T R T
't-t"l‘? :’r\f\\‘{.":\‘)'«t‘r‘t{\':).As'\‘\’-:"\.\t\‘('vr'\.'{".“"L'{.P\.“_'-&-:\-_'h&{‘_(\“’.IL" L P NI i B | A‘I‘(‘-"(‘- AR N RS A N N W S W T N N L A R A

CHAPTER 2

QUEL+ : THE LANGUAGE AND HOW TO PROCESS QYJERIES

2.1. Introduction

This chapter examines the approach of extending a database manager to handle
not only data but control information as well. We will first present the structure of
QUEL+ [STONSS|, which is an extension to QUEL, the query language designed for

INGRES [STON76]. There are two major extensions made to QUEL:
a) repetitive execution of commands, and
b) stor'ng query language commands in relation fields

The first extension allows the user to implement iteration using the query language
itself instead of escaping to a general purpose programming language. In EQUEL/C
[ALLM76] for example, the programmer can embed INGRES commands in C
[KERN78] programs and therefore can iriplement iteration through the iterative con-
structs of C. The second feature follows the paradigm of LISP [WILE84] and allows
the uniform treatment of data and control information, or procedures in [STONSS],

where the latter is implemented using database commands.

Physical and conceptual modeling, query processing, concurrency control and
crash recovery are some of the well known DBMS problems [ULLM82]. The solutions
to many of these problems can still be us:¢ in the QUEL+ environment. However,

performance will deteriorate due to the complexity of the new operations. Our goal in

14

P LA AT R AT 0w T R

N e Y

PRI Ao, AN R A TN P B ™) P FOY T e T T e e T e B e LN e e AT e Nt LR T] T R T U N TN Vi T T e

e e e e o e s e, e e ey o e 2

15

this chapter is to examine ways of improving the performance by providing m e
sophisticated optimization tactics. More specifically, we concentrate on the problem of
query processing. Issues that deal with user interfaces, physical and conceptual model-
ing, consistency in a multiple user environment and robustness, are examined in more
detail in [STONB86b] in the context of the design of a new DBMS being developed at

the University >f California, Berkeley, called POSTGRES.

This chapter is organized as follows. Section 2.2 presents the language QUEL+
and motivates its use with a set of examples. Then, in section 2.3 we study the prob-
lem of query processing by presenting first a simple algorithm and then proposing a
set of possible improvements. Sections 2.4 and 2.5 present ideas on supporting
schemes that improve the performance of the system, like caching and indexing.

Finally, we conclud in section 2.8 by summarizing the discussion of this chapter.

2.2. The Query Language QUEL+

As mentioned above, the major extensions that are introduced to QUEL+ are the
repetitive execution of standard QUEL commands and storing QUEL commands in
relations fields. [STON85] gives a detailed discussion of the language. We review here

some of the extensions that will serve as the basis of our presentation.

2.2.1. Iterative Execution of QUEL Commands

Iterative execution of commands was first introduced to INGRES by Guttman in
(GUTTS84b]. Guttman mainly used the iterative version of the append command in
order to express queries that produce the transitive closure of a binary relation, in his

case, parts explosion in a VLSI design environment.

AR A S n A M S Py = s B fn Flen P A T T O e W S 3T W ¥, AT W ST T e T, N Ta L ST o DT T T

AR TR RGN ST e T Ol T BTN ARSE R B TN T W T e 1

L S e D e - L ——

16

To motivate the use of iterative execution, we use the following example of a
relation EMP (name.salary,mgr), with the obvious information about employees.
The goal is to perform an update on the EMP relation, so that all employees that even-

tually work for Smith (through the manager hierarchy), change their mgr field to

Smith. For example, given the following EMP relation

name |salary | mgr

Stones 20K Smith

Jones 10K Stones

Lam 15K Riggs

Felps 10K Jones

it is required that the mgr field values be modified, yielding the following relation

name |salary | mgr

Stones 20K Smith

Jones 10K Smith

Lam 15K Riggs

Felps 1CK Smith

One way this can be achieved, is by repetitively executing the command

range of EMP EMP1 is EMP

replace EMP (mgr = *Smith®)
vhere EMP mgr = EMP1 name
and EMP mgr = "Smith®

until it fails to modify EMP. In QUEL+ we add a * (asterisk) to a standard QUEL

command and introduce r¢ ctition with the following semantics

SR TR RS LA TR RS 1% W 1N S 5 SV NN I N LA TS S Tl WAL Wt Tt Th® SRl S WL N S LT DS L LT L0 Jop e B Py 0% 16

e

17

To process command*, process command repetitively unts’ st has no further
effect on the database

The above semantics do_not necessarily imply that the command will be processed by
iterative execution. The work of [GUTT84b] and [IOAN86] shows that iterative exe-
cution of the same operation is not always the most efficient way process transitive
closure commands in a database environment. Using the * extension, we can perform

the above update with the singie QUEL+ command

range of EMP EMP1 is EMP

replace* EMP (mgr = *Smith")
vhere EMP mgr = EMP1 name
and EXP.mgr = *Smith"

This shorthand notation not only simplifies the user interface but also gives the flexi-

bility to the query optimizer to optimize the loop as a unit instead of a single replace

command.

2.2.2. QUEL as a Data Type

It was first proposed in [STON84] that QUEL commands be stored in relation
fields in the same way data is stored in relations. For simplicity, these fields are
thought as variable length strings. In INGRES, relation fields can be accessed indivi-
dually through the dot (.) operator. For example, EMP mgr in the above command
accesses the manager names recorded in EMP. Extending these semantics, it will be
assumed that accessing a relation field containing QUEL commands (QUEL field)
implies the execution of the commands that are stored in the field. In addition to that

accessing mechanism, a new QUEL+ command, called execute, is allowed. The

B R R R R R R N R R R R R R R R EENSEE——~

RS

.

- A

Rl

1 R R R AR RS T G G R G R R E SR O P AT PR F v I T 7 P 0 GV, T GO A N R R R T R R e W oL o o VI P ST oV UL G ISy SR oy S

18

semantics of
execute (Relation. fd) where Qualification

where fd is a QUEL field of some relation Relation, is to process the commands
stored in the fd field of those tuples in Relation that satisfy the Qualification.
Through execute, the user can explicitly request the execution of specific commands.
For example, in [KUNGB84], an ALGORITHMS relation is defined where specific imple-
mentations of algorithms that solve the shortest path problem are stored in the form
of sequences of QUEL commands (or database procedures). Using execute, a user

can then select and process any of these procedures.

In light of these two extensions, we differentiate for processing reasons between

two types of QUEL fields.
a) coilections of retrieve-only commands (queries), or
b) collections of general QUEL commands (i.e. queries and updates)

In the first case the result of processing the queries is a set of relations that the user
has requested while in t '~ second case uprates may be performed on the database and
no specific result is returned. Processing QUEL fields amounts to evaluating the com-
mands that are stored in these fields. As mentioned in the introduction, we study the
problem of efficiently evaluating the contents of QUEL fields in Chapters 3 and 4.

Here, we will concentrate on the problem of processing QUEL+ queries.

We motivate the discussion that will follow in the next section on the problem of

processing QUEL+ queries by wusing au example. Consider, a relation

EMP (name, salary,mgr, hobbies) where name, salary and mgr are conventional -

i
)
B T A e T B W Ve s B N O e R T T Ty T g T T o o S i S R o e e Y DA A TR G LA -‘u’u'-;-")")"_-‘"_n"_-".n'j

19

fields while hobbies is a field of type QUEL. We use hobbiec to retrieve data on the

various hobbies of employees. Assume also that the following relations exist in the

system

SOFTBALL (name,position,performance)
SOCCER (name,position,goals,performance)
MUSIC (name, instrument, performance)

Adding Jones as an employee can be done now as follows:

append to EMP (name = ®Jones®, salary = 40K,mgr = "Smith®,
hobbies = ®retrieve (SOFTBALL position,SOFTBALL performance)
vhere SOFTBALL .pame = "Jones®
retrieve (SOCCER.position,SOCCER performance)
vhere SOCCER name = ®Jones®®

It is assumed that the corresponding entries for Jones have been already inserted in

SOFTBALL and SOCCER. An instance of the EMP relation after the above insertion of

the above tuple will be

pame |salary | mgr kobbies

Riggs 20 Smith | retrieve (SOFTBALL position,SOFTBALL.performance)
where SOFTBALL name = °Riggs®

Jones 30 Swith | retrieve (SOFTBALL.position, SOFTBALL performance)
vhers SOFTBALL name = "Jones®

retrieve (SOCCER.position,SOCCER performance)
vhere SOCCER.pname = ®Jones"

Lam 80 Moore | retrieve (MUSIC. all)
vhere MUSIC name = ®Lanm®

We discuss how fields of type QUEL are accessed and used in queries in the next

i % - » ETRT ” » s . S ’ ' -y S LT A L v 1 - R RS R
D P o o N A L i R e g R T T T T e I T T G A A N AR A

20

subsection.

2.2.3. Using QUEL Fields in Queries

The QUEL syntax is extended using the multiple dot notation borrowed from
Zaniolo's GEM language [ZANI83,ZANI84). For example, one can retrieve the perfor-

mance of Jones in all his hobbies as follows:

retrieve (EMP.hobbies performance)
vhere EMP name = ®Jones"

The number of dots that can be used depends on the relation nesting level. With the
use of the multiple dot notation, QUEL+ allows the user to actually ‘“‘navigate”

through relations using QUEL fields as links between the accessed tuples.

Clearly, the result of evaluating (materializing) a QUEL field is a set of rela-
tions, or in general a set of tuples. These sets are themselves database objects (rela-
tions). It is very natural for a user to be able to use these objects as parts of his/her
queries. For example, one may wish to get all pairs of employees that play in the
same positions and with the same performance in their hobbies. QUEL+ supports the
most common set operators like set equality, set inequality, union, intersection and
containment as well as database oriented operators like the outer and natural join.

The above query can then be formulated as

range of EMP EMP1 is EMP
retrieve (EMP name,FMP! .name)
vhere EMP name 7 EMP1 name
and EMP hobbies == EMP!.hobbies

where == is the set equality operator. We briefly discuss here some issues on the

implementation of such operators.

e € A T O R T R LA AL LS TR TR R R LGP ARGASE G

21

The relation level operators can be implemented in either of two ways. First, one
can write specialized routines. These routines must of course be coded to work
efficiently in a database environment where whole pages are read and written as a
unit. This approach seems to oe rather straightforward, with the only disadvantage
that some (considerable) effort must be put in writting this code. The second way is
based on the fact that one can use the expressive power of the query language to write
programs that implement the set operators. This approach requires minimal effort
and no substantial extension to the query optimization code, since the only thing that
is needed is the capability to issue queries from within the system itself. It is also
similar to the approach taken in [WONG85] for extending relational database systems
with new types and operators. To give an example, let us assume that we want to
find out if two QUEL fields evaluate to identical relations. After processing the left
and right hand operands, two relations R1 and R2 respectively will be produced.

Checking if R1 == R2 can be done using the following QUEL query

/% assume that it returas 1 1if they are equal, null otherwise ¢/
retrieve (true=1) where

count (R1.TID) = count (R1 .TID where R1 fd_1=R2.fd_1 and
R1 £d4_2=R2 fd_2 and

R1.£fd_n=R2.£fd_n)

where it has been assumed that reiations R1 and R2 have fields fd_1, fd_2, ...fd_n
and TID is a unique Tuple IDentifier that is used to augment every tuple in the data-
base. Similarly, one can derive QUEL queries for the rest of the relation level opera-

tors.

1 A A o N R L T e D R T R T AT SR YR oy D S A AR I O ARt Tt

[3~]
[3v]

After reviewing the structure and semantics of QUEL+, we now examine the problem
of query processing. As mentioned above the analysis is restricted to QUEL fields con-

taining retrieve-only commands.

2.3. Processing QUEL+

This section presents a query processing algorithm that INGRES can use to
evaluate QUEL+ queries. First, it discusses how the original decomposition algorithm

of Wong and Youssefi [WONG76] was extended to handle queries in relation fields and

the extended relation level operators. An example is also used to illustrate the flow of
the algorithm. Then, some possible improvements are suggested and explained

through examples.

2.3.1. Extended Decomposition

Figure 2.1 shows a diagram of the extended decomposition algorithm as suggested

in [STON85]. The modifications doge to the original Wong-Youssefi algorithm can be

summarized as follows

a) All one-variable clauses except those that include a muitiple dot reference or a
relation level operator are processed first. The reason is that clauses involving
extended operators cannot be processed efficiently. For example, none of the fol-

lowing two clauses

EMP hobbies.position = ®catcher®
or
EMP hobbies == some_constant_relation

should be processed first because that would imply the materialization of the hob-

: WA SR INIGY L A A A LA LA L), 4L e B T A S
ot i e e Y ™ T s T e e O e e R e e R A R O W g

23

QUEL+ Query

Extract and process one variable clauses
which do not contain relation level or
multiple dot operators

Apply reduction algorithm

Yes Are there relations No
to materialize?

No Yes |

Do tuple substitution Materialize a relation Pass to extended OVQP
for relation level
operator evaluation

Is the qualification variable free?

Figure 2.1: Extended Decomposition Strategy
(OVQP : One Variable Query Processor)

bics entries of all employees, which is very expensive. An exception to that is the
case where an index exists on EMP hobbies position. This case is discussed in

more detail in section 2.5.

b) An extra step is required to check if all QUEL field entries bave been material-
ized. Materialization is done by passing the queries found in the QUEL field to a
second INGRES process which in turn returns the result relation(s). The decom-

position algorithm continues processing one-variable clauses and materializing

R P L T R T A T P A N AL R LS TR R R L L S A A L (L P L A TR SR P CR EAT R LA LA LR

I —— e T T e e T e e e e s e e

24

QUEL fields until no more such fields are left unevaluated.

c) In [WONG76| the criterion for selecting a relation to iterate over in the case of
tuple substitution, is the size of the relations. The presence of QUEL fields
makes this criterion ineffective. Not only the number of tuples but the cost for
materializing the corresponding QUEL fields should be considered. The reason is
that during tuple substitution, each tuple variable will be replaced with specific
field values read from the relav.~n. In case of QUEL fields these values are the
materialization results. Therefore the criterion for selecting a relation to iterate
over will generally be a function of the size of the relation and the characteristics
of the materialized objects. One of these characteristics which is of major impor-
tance is the ability of the system to keep materialized objects in secondary

storage, i.e. caching. This aspect is treated in more detail in section 2.4.

To illustrate the extended decomposition algorithm, a detailed example is now
presented. Given the EMP relation of the previous section, we are looking for the
names of employees that play as catchers, play in the same positions and with the
same performance with their managers and these managers are weli paid. In QUEL+

this is expressed as

range of EMP EMP1 is EMP

retrieve (EMP.name)
vhere EMP hobbies == EMP1 hobbies
and EMP.hobbies position = "catcher®
and EMP.mgr = EMP1 naze
and EMPI1 salary > 70

Following the flow chart of Figure 2.1, we first identify the one-variable clause on

R A e i T e o T e T O R T T B e O T S e T T b T R T R R AR RS O T PRE T ' o

25

salary and process it
retrieve into TEMP1 (EMP. name EMP hobbies) where EMP salary > 70
The new query is now

retrieve (EMP name)
wvhere EMP hobbies == TEMP1 hobbies
and EMP hobbies position = "catcher®
and EMP.mgr = TEMP1 name

Notice that the other one-variable clause EMP hobbies position = "catcher® is not
processed, since that would require materialization of all hobbics entries in EMP. Con-
tinuing, we find that no reduction is possible. Since there are still variables in the
query, tuple substitution must be performed. Assume that iteration is done over

TEMP1. Then the query becomes

retrieve (EMP name)
where EMP hobbies == QUEL-constant-1
and EMP hobbies position = "catcher’
and EMP mgr = constant-1

QUEL-constant-1 is now a collection of QUEL commands that were stored in the hob-

bies field of TEMP1. Since the sbove query now has a one-variable clause, we process

that first
retrieve into TEMP (EMP name, EMP hobbies) where EMP mgr = constant-1
changing the query to

retrieve (TEMP name)
where TEMP hobbies == QUEL-constant-1
and TEMP hobbies position = "catcher®

Processing again returns to tuple substitution and variable TEMP is chosen. Substitut-

n

P =] - o o R ——— e s e g v e e g . - PR L]
R R G A R SN IO RS N NP W O L R T N R R R R N L TR T DY e G O N S T S PR e W L O
o vl & b 28 g SO TR - iy LT, 'a = h | e R ey B U BTy e R

] -

26

ing the fields for their values we get

retrieve (constant-2)
wvhere QUEL-constant-2 == QUEL~-constant-1
and QUEL-constant-2. position = ®catcher®

Now the query has no variables and is passed to the materialization module. If

QUEL-constant-2 is chosen the resulting query will be:

retrieve (constant-2)
vhere TEMP3 == QUEL-cnnstant-1
and TEMP2 position = ®catcher®

As pointed out in [STON85] QUEL-constant-1 is not changed to TEMP2 in both
occurrences, the reason being that TEMP2 will be processed separately to check if the
second qualification clause is satisfied. As a result, TEMP2 ;vill be reduced to being
only the tuples with position=®catcher®, which would make impossible to check the
first condition (==) correctly. That is why two variables ranging over the same rela-
tion were introduced. Should we have liked to avoid that, the above original query
could have been expressed with a clause that checked if catcher was contained imbthe

list of positions an employee plays. That is, use
and EMP bhobbies position >> (®catcher")

where >> is the containment operator. Then one tuple variable would be enough since
the modified OVQP (One Variable Query Processor) would handle that clause by sim-
ply returning true or false and not altering TEMP2. Generally, more than one tuple
variables need be introduced if the same QUEL-constant appears in both simple selec-
tion or join clauses that include relation level operators. However, the latter must

have only one level of reference (i.e. one dot). For example,

s BT, b A AT L RN T T N T S R R A DL L B T I I AP LN TV BaW T Nl St Sl Tl B S Rl ¥ E v I S U Ry

27

and EMP.A1 A2 .A3 = constant-value
and EMP A4 > constant

will be changed to
and TEMP.A2 A3 = constant-value

where TEMP is the set of employees with values of A4 higher than constant. Then, in

the next iteration, two different variables will be used to substitute for TEMP.A2.

Returning to our example, we seec that the new query now has a one-variable
clause which can be detached and processed. If TEMP2 does mot ~ontain "catcher®,

the query is false and will be terminated. Otherwise, we continue with the query

retrieve (constant-2)
where TEMP3 == QUEL-constant-l

Now, there is just one more QUEL field (QUEL-constant-1) to materialize, yielding

retrieve (constant-2)
where TEMP3 == TEMP4

This is a variable-free query that must be passed to the one-variable query processor.
This module will process the operator == for the two relations involved and if it

returns true, the value constant-1 can be returned to the user.

The above extended decomposition aigorithm delays materializing a RUEL field
until there is nothing else that the conventional query processor can do. Even tuple
substitution must be done first, the reason being that checking a condition that
involves multipie dot references implies a loop over all tuples in the relation. During
that loop QUEL fields are materialized and checked through lower level fields. Gen-

erally, the absence of any information about the contents of relations in QUEL fields

L}
+ - ™ - » I » ™ » ~ ™ Ty ‘- » -
e L) n R AR S AR

¥ Y 3 Y } - iy, Y7he N 4y % Mt i ' T T - - 1 o >
i\r{':{'4‘:“"‘.""":.)‘:“-:'&:'&‘9:*':"-;1‘-:"- :‘(-:‘(’:’(:1‘:"‘.\)‘@'&%L\';".’ e - ?v'- AN AR A AT s T a TR AT o TS A A P

a0 RS R R R

28

makes optimization very hard, if not impossible. In the next section we discuss one
possible improvement through saving the results of materializing QUEL fields (cach-
ing); in this case, the contents of QUEL fields are known and conventional cardinality
estimation methods [SELI79] can be used to estimate the cost of the various processing
strategies. However, before moving to caching we suggest some other possible

improvements that apply directly on the algorithm itself.

2.3.2. Improvements to Extended Decomposition

In this subsection some possible improvemerts to the algorithm presented above
are examined. First, we give some rules that can be applied in general; then, some

other special case transformations that can be used are outlined.

The first general rule as, suggested above, is to process one-variable clauses and
do reduction as the initial Wong-Youssefi algorithm proposes [WONGT78). This will
certainly be the best vhing to do independent of the number of relations or QUEL field
materializations that wili follow. The problem arises when tuple substitution is neces-

sary. We motivate our proposal using an example.

Let us assume that in the EMP relation the hobbses field produces a relation,
which itself has a field per formance that also produces a relation 2s a result and the
field we are interested in is the locatson field of that last relation. We also assume the

existence of another relation DEPT (name,mgr,location). The query is

retrieve (EMP. name,DEPT.name)
vhere EMP hobbies performance location = DEPT location
and EMP mgr = DEPT mgr

The question that arises here is over which relation to iterate doing tuple substitution.

27 p " 0

R IO G T B SO SR BT PR NS S L N N LT U N LI TS S I S0 IO e TO PO g e

-

+

R R R R R R R BN R R R RN~

gy A

The main idea behind tuple substitution is to introduce single variable selection
clauses as early as possible. Using such clauses relation sizes are reduced and, con.s-
quently, the .number of materializations that will be needed is alss lower. For exam-
Pie, in the above query tuple substitution should be done over DEPT independently of
the sizes of the two relations. The following analysis supports this (:cision. T-*
|EMP| and IDEPT| be the cost of scanning the relations EMP and DEPT respectiv

For simplicity we will assume here that the cost of processing a one-variable clause

equal to the cost of scanning the relation, while the cost of processing a join hetw:

two relations is equal to the product of the costs of scanning each of th.se reiatias.
The reason for making such assumptions is to simplify the analysis that follows. We
discuss in the end of the paragraph how general cost functions can be used ir the pres-
ence of indexes or cther join algorithms (e.g. merge scan). Also let SEL_E be the per-
centage of <MP tuples that satisfy a constraint EMP mgr=DEPT mgr for the various
departments and SEL_D be the percentage of DEPT tuples that satisfy a constraint
DEPT rgr=constant. Finally, it will be also assumed that the cost of producing
EMP hobbies.performance for the various empioyee tuples is M and S is the average
size of the resulting relation (i.e. S=|EMP hobbies performancel|). Based on the
above, we now analyze the cost of processing the above query by tuple substituting

either over EMP or DEPT.
a) Tuple substitute over EMP: For each EMP tuple, process the query

retrieve (constant,DEPT name)
where QUEL-constant performance location = DEPT location
and conmstant-1 = DEPT mgr

G T R N o T o e T L TR g i T T P e L e E T B o o A o L W O T e D P e L AT St

30

Since |DEPT| is the cost of processing the one-variable clause and assuming that
materialization results are kept in secondary storage to avoid re-evaluation of

QUEL fields, the cost of processing each employee tuple will be

IDEPT|
M
S=|DEPT|*SEL_D

/* cost of doing tlie one-variable selection */
/* cost of materializing the QUEL field */
/* cost of doing the join */

I +

IDFPT|*(1+S+«SEL_D) + M
for a total of

|EMP | * |DEPT |*(1+S*SEL_D) + |EMP|*M (1)

b) Tuple substitute over DEPT: For each DEPT tuple, process the query /

retrieve (EMP.name,constant)
vhere EMP hobbies performance.location = constant-1
and EMP.mgr = constant-1

Again under the above assumptions, for each department tuple the cost will be

IEMP| + /% cost of doing the one-variable selection */
|[EMP|*SEL_E*M + /* cost of materializing the QUEL fields */
[FMP|+SEL_F*S = /% cost of doing the final one-variable selection */

|EMP|*(1 + SEL_E=*(M+S))

and assuming that re-materialization of the same field is never needed, the total

cost will be
|EMP | * |DEPT |* (1+S*SEL_E) + |EMP|*SEL_E*M (2)
Subtracting (2) from (1) we get
DIFF = |EMP|*|DEPT|=S%(SEL_D-SEL_E) + |EMP|*Ms(1-SEL_E)

and considering the second factor to be much more significant because of the high

AR M e e e e L T e ™ R T S T T e L W L T e % T e e N e L L T e T O U

31

materialization cost, we may conclude that it is better to tuple substitute over the
relation that will cause the least number of materializations, in our example DEPT
since SEL_E<1. The reascn for that is that tuple substitution will create some one-
variable clauses which can then be used to restrict the number of tuples that need to

be considered for materialization of their fields (in the above case that was EMP).

Returning now to the simplistic assumptions made for the cost of processing
one-variable clauses and joins between two relations we can see that the above
analysis still holds. However, the formulas are not that simple any more. In general,
the cost of coing the one-variable selection on a relation R is a function F(|R|) and
the cost of doing a join between two relations R! and R2 will be J(IR1I,|RZ]).

Hence the two corresponding formulas for (1) and (2) will be

|EMP|*F(IDEPTI) + |EMP|*J(|S|,|DEPT|*SEL_D) + |EMP|*M (1a)
and

IDEPTI*F(|EMP|) + |DEPT|*|EMP|*SEL_E*|S] + |EMP | #SEL_E*M (22)

Evaluating these two formules and checking their difference will indicate which plan is
preferable. However, if we assume that still the materialization cost M is the primary

factor in the above, DEPT will be the best candidate for tuple substitution.

In general, an algorithm that selects a relation to iterate over, attempts to
minimize the total number of tuple substitutions required, assuming the most expen-
sive processing lies in QUEL field materializations. Such an algorithm would go as fol-
lows. Let V be the set of all non one-variable clauses. Assume also the existence of at

least one clause of the form R,.fd, = R,.fd,. Such clauses are called ssmple. Let

32

TS(C,R,) be the number of tuple substitutions required over R, for the clause C to be
evaluated. In other words, TS(C,R,) is the number of dots in the reference to relation

Ry. For example, assume that we have the clauses

(c1) EMP .hobbies.performance location = DEPT location
and

(c2) EMP.mgr = DEPT.mgr

Clearly, three tuple substitution loops must be executed over EMP in order to make
the first clause effective. Hence, T'S(C1.EMP) = 3. DEPT can become effective with
orly one substitution, i.e. TS(C1,DEPT) == 1. Considering the second clause, both EMP
and DEPT need only one tuple substitution; therefore, TS(C2,EMP) = 1 and

TS(C2,DEPT) == 1.
Next we compute

diff(R) = max TS(C R)

for each rt ‘on R involved in some clause. Intuitively, these numbers measure the
difficulty of processing the query depending over which relation tuple substitution is
performed. This difficulty is considered to be mainly due to the number of tuple sub-
stitutions required to reach ground relations, i.e. relations with no QUEL fields. Sup-
pose that Ry, is the relatior with the minimum diff value, i.e. the relation such that
diff(Ry)<diff(R), for all R that are involved in simple clauses. We choose to tuple
substitute over the relation Ry (in case of ties we favor the smaller relation). For
example, in the example mentioned above, we will have diff{EMP }=3 and di ff(DEPT }=1

and we choose to tuple substitute over DEPT due to clause C2. It is straightforward to

N P ' PR 0 10N, L A A A i i e G o e v T N AU N i)

33

show with an analysis similar to the one presented for the example that this is the best

tuple substitution strategy.

The above algorithm gives a rigorous way of selecting the relation over which
tuple substitution will be done. In cases whererevery clause involves at least one rela-
tion accessing a QUEL field, i.e. there are no simple clauses, the above algorithm will
not work. However, these are not of major interest since one way or the other the
entries will all be materialized during tuple substitution. Notice also that in the above
analysis, three basic assumptions have been made. First, computed results were kept
in secondary storage to prevent multiple materializations of the same entries. Second,
the materialization cost M was dominating any other cost in our formulas (1) and (2).
Finally, the costs for processing one-variable and join clauses were very simplistic. In
general, formulas (1) and (2) will have two factors. One is the estimated cost for
doing the join between the two relations EMP and DEPT by tuple substituting over
either of the relations. This factor is determined using conventional cost estimating
techniques [SELI79]. In the general case, the cost M may not dominate all other cost
factors. Then, in order to compare the costs of the two processing strategies, some
estimate for the cost of materializing a given QUEL i.id is needed. This cost can be
calculated using standard techniques, at the time tuples with QUEL fields are inserted.
If for efficiency reasons preprocessing of queries at insertion time is not possible, some
kind of off-line processing can compute the estimated costs and store them along with
the QUEL fields. In any way, the query processor will have two specific estimated
values for the costs of the two strategies derived from formulas similar to (1) and (2).

Comparing these values and selecting the minimum one will suggest the most efficient

TSI R TR ALY I R S N s L T PR T GAR T C A S TP PV) T AT F S P LA o g, AL G S AN I QL 0 P PNL S

34

processing strategy.

Let us now describe a different technique that can be used to improve the perfor-
mance of the query processor. The basic idea is that when an entry from a QUEL
field is materialized, the query that has to be processed next is known. More
specifically, the structure of the query is known and through that the optimizer can
identify access structures that may be desirable in order to speed up processing. For

example, in the query

retrieve (EMP name, K DEPT name)
vhere EMP hobbies performance average = 10
and EMP . mgr = DEPT mgr
and EMP.hobbies leader = DEPT.mgr

the algorithm outlined above, will choose to tuple substitute over DEPT, the new query
being
retrieve (EMP name,constant-1)
vhere EMP . hobbies performance.average = 10

and EMP .mgr = constant-2
and EMP . hobbies.leader = constant-2

Finally, after the detachment of the one-variable clause the following query will be

processed

retrieve (TEMP name,constant-1)
where TEMP hobbies performance average = 10
and TEMP.hobbies.leader = constant~2

At this point the query processor will start materializing entries from the hobbies field
of TEMP. Let TEMP1 be the result of maierializing a specific entry of hobbscs; then the

type of queries that will have to be processed for each TEMP tuple will be

retrieve (constant-2,constant-1)

..........

N e

Y T N L N N I e I e L L, S e S I e L R e e e e T e e e e e e Y

35

vhere TEMP! performance average = 10
and TEMP1 leader = comstant-2

From that last query one can observe that depending on the size of TEMP! it may be
beneficial to build a secondary index on leader so that the second qualification clause
can be processed efficiently. This structure will be built in the process of producing
TEMP1 (on the fly) and no extra time need be spent at the time the query will be
evaluated. Dynamic creation of indexes or imposing other structures on relations (like
sorting) has also been used in conventional query processing [YOUS78,KOOI182]. How-
ever, a difference is that in the QUEL+ environment no significant additional cost
need be spent on creating the index. At the same time a result of a materialization is
produced and stored in a temporary relation, some adequate organization is chosen or

a secondary indexing structure is built.

In the same spirit we describe another optimization technique that can be used to
reduce the cost of processing a query. Clearly, one wants to materialize QUEL fields
and produce results that will be used subsequently in the course of processing a given
query. However, in some cases, not all queries stored in QUEL fields will give relevant
information. For example, consider the relation EMP (name,salary,mgr,hobbies) of

the previous section, and the query

retrieve (EMP.name)
where EMP hobbies. instrument = ®violin®

When the various entries in the hobbies field are materialized, only those queries that
involve in their result a field snstrument should be evaluated. In our example, the

queries that retrieve data from the SOFTBALL and SOCCER relations should not be

ALLIVMES LA TCCATATA TR C LR CR AR I N e % 10 B R AL I PN R e W AT W T L L R I S I S Y o Py A

36

evaluated. Checking which queries are useful is not hard. It amounts to simply
checking the target list (projection fields) of each query. Moreover, even if the query
in hobbies retrieves many fields from the MUSIC or any other relation that includes a
field instrument, the contents of the materialized relations should be restricted to
contain only the information that is absolutely necessary, in this case the instrument
field. This way the size of the materialized objects is kept as small as possible which is
especially crucial in the case where these objects are kept in secondary storage. We

should also notice here that the same idea exists in conventional query processing as

well. When intermediate relations are built as the result of processing a one-variable
clause or a join, the fields that are projected in such a relation are the ones that are
needed either to form the final result of the query or to continue processing the query

[WONG78,SELI79).

The above technique tries to reduce the amount of space required for storing
materialized objects. However, there are some cases where no space at all need be
allocatcd for materialization. This is the case where a QUEL field contains a single
retrieve or define view command. In this special (but very common case) there is
no need to even produce the result of the command. What we propose to do is to sim-
ply transform the original query in the same way conventional query modification
[STONT75] does in view processing and integrity constraint enforcement. For example,

consider the following query
retrieve (EMP hobbies.position) where EMP hobbies average < 5

and the hobbies field of the EMP relation contains one of the following QUEL expres-

LR T T T T T R TR T AT T TR T UM) T N T R e T T T N S T e T ST M T A T T M L T T e R WAL WL W) W e et W

37

sions

retrieve (SOCCER all) where SOCCER name = constant
or
retrieve (SOFTBALL.all) where SOFTBALL name = constant

i.e. all employees have at most one hobby. Then the given query can be transformed

to

retrieve (REL.position)
where REL.average < 5
and REL.pame = constant

where REL is either SOCCER or SOFTBALL. This transformation not only prevents the
query processor from materializing relations, but it also allows the optimizer to have
more information on the structure of the query, and therefore to process it with a
better access plan. It is possible to generalize this technique to handle multiple state-
ments but only in the case where all queries in the QUEL field are returning data from
exactly the same relation. Then the transformed query will be simply the disjunction
(or in QUEL) of smaller subqueries like the one we used in the above example. Sec-

tion 4 of Chapter 3 discusses this transformation in a diff :rent context.

This concludes our presentation of the extended decomposition algorithm for process-
ing QUEL+ queries. In addition to the basic algorithm, we presented some less gen-
eral tactics that can be used to improve the performance of the query processor. In
the two sections that follow two other issues that are of significant importance to

query processing are discussed, namely caching and indezing of the results of QUEL

fields.

R T e o oW L o Tt e W T o e e O o LT T DM T T b U LR S = e m Pt T R S Pk e e e L

L&

38

2.4. Caching Materialized QUEL Fields

As it was seen in the previous section, materializing an entry of type QUEL
amounts to executing, possibly several, QUEL queries. Hence, it will be generally very
slow to perform this operation every time a QUEL field is accessed. This section

examines ways to make QUEL+ processing more efficient through the use of a cache.

2.4.1. What is Caching?

We mentioned at several points in the previous sections that one way to avoid
evaluating the same QUEL field entries multiple times, is caching. By caching we
mean computing the values of QUEL ficlds and storing them in some specifically
assigned area of secondary storage. This computation can be done either at the time
tuples are inserted in relations or the first time they are referenced. We will call the
former precomputation of QUEL field entries since it occurs before even the content
of the specific field is accessed. However, our focus here is on the latter case which is
more natural. The basic idea is to keep in secondary storage materialized objects that
are frequently used in queries. Under that formulation, the caching problem is con-
ceptually the same with the well known caching problem in operating systems
[MATT70]. Notice also, that the cache can be used not only for materialized QUEL
fields but for generally holding the results of any query issued by the user. These can
be saved because either the same query may be given by a user frequently or they can

be used to answer other queries [FINK82,LARS85,SELLSS.

The caching problem introduces several subproblems to be solved. The following

list is the set of issues that will be discussed in this section.

T T e A S A A A A L A P R L I A L A AN L AL S LA L LA E R IR B ATE ER PR TR TR TR S

& ‘.1‘._“-‘ T

‘! x_rJ W

39

a) Which query results to eache?

b) What algorithm should be used for the replacement of cache entries?
c) How to check the validity of a cached object ¢

d) How to\indcz the entrics of the cache?

We will assume that the general model of the cache is a limited area in secondary

storage where entries of the form
(Qid,Query_expression,Result)

are stored. Qid is some unique identifier, Query_expression is some canonical
representation for queries, e.g. query graphs [WONG76], and Reslt is the relation
resulting after executing the query or set of queries that were found in some QUEL
field and described by the second field (Query_expression). The follo /iug four sub-

sections give answers to each of the above mentioned questions (a) through (d).

2.4.2. Which Query Results to Cache?

Depending on the information known about the queries, the syscem can decide
whether a result is worth caching it or not. For a given materialization result R, this
decision will be generally based on the frequency of references to R, the frequency of
updating the relations used to build R and the costs for computing, storing and using

R. Specifically, the following is the list of parameters .o the caching problem

n G - 1Al 0T AT <. " - .= " . - O T T RTINS T MY . T T WY AT
LRSS I A S e L T i e e e N L T L L e T T R AT U T LR L U LT iR T Y e

40

Caching Problem Parameters

c Size allocated for the cache
r; Probability of referecting result R;
u; Probability of updating R;
M; Cost of producing R, (materialization)
S; Cost of writting R; in the cache
Is Cost of using R; from thke cache
| R; | Size of R;
IN Cost of invalidating a cache entry

Table 2.1: Caching Problem Parameters

C is the number of disk pages allocated for the cache. r; and u; are the probabilities

of referencing and updating respectively a result R;. M; is the cost of materializing

the QUEL field that gives the result R; while S; and U; are the costs of writting to

PP ——

and reading from the cache R; respectively. Finally, it will be assumed that invalidat-

ing an object in the cache incurs a cost IN. Given these parameters, we now describe i

[

. . . . : 1

various alternatives for the problem of selecting which results to cache. Depending on §
the amount of storage allocated for the cache, we diflerentiate between two cases:

Unbounded and Bounded Space.

-

|

Unbounded Space E

In this case € =oo and therefore the decision to cache a result R;, is local; that is, it :
depends only on the values of parameters associated with R;. Since each object is
examined individually, it will be u;+r;=1. The criterion is based on comparing the

cost of processing R; without using the cache with the corresponding cost assuming

)

AR P TN T e T R T N T R T T T e R N T e e AT R e e T R Y L T T L T R L e e L S N N L L N L T WY T.‘&"\i

41

that R; will be cached. Let the two costs be denoted by NC; and C; respectively. In
the case where no caching is used, the result must be produced at each reference by

materializing the corresponding QUEL field. Hence the total cost wil} be

NC,' =r; M;
In the case where caching is used, a result is stored in the cache and is invalidated
each time an update to the database has some effect on it. In order to compute the

cost C; we will differentiate between the following four cases for the types of two sub-

sequent requests:

a) Read-Update: In this case the result is invalidated because of the update, the con-

tribution to the total cost being
r; u; IN
b) Read-Read: In this case the result is simply read from the cache with total cost
rirg Us

c¢) Update-Update: The cost here is due to doing only the invalidation of the cached

entry, that is
u; u; IN

d) Update-Read: This is the case where the object must be re-materialized and

stored in the cache. The total cost will be
ri (M;+S;)

Hence for the case where the cache is used, the cost of processing will be

?1'?4‘. "\ ".'4'4"” '4" J‘ '\.'-’\ \\'('."' (‘:n :-' - :.'! IV -\‘f:!h % " uf-.‘ 1_* r“'&'{‘:'linc*&"pt‘\’f -..‘f*}fn.f\r\.'(\ 'k F‘\'-{.' "’(" \ SO B L e e

42

C; =r; u; IN +r; r; Ui +u; u; IN +y; r; (M,-+S,-)
or, since r;+u; =1,
C" = u; IN"'Y.’ [r,- U,""!l" (M,""S,')]

Comparing now C; and NC; we can identify the cases where ** is worth caching result

R;. That happens when NC;>(;. Using the formulas extracted above, we can see

that this is true if

M; > Ui +(2—1)
r.

Checking the above condition will determine if the result of 2 given QUEL field

materialization should be kept in the cache.

Bounded Space

This case is more realistic than the previous, in the sense that some limited space on
secondary storage is allocated for caching. Hence, in this case @ is some finite
number of disk blocks. In contrast to the criterion used for Unbounded Space, all
objects to be cached must be considered. Let N be the number of results to be
cached. Each object R; has reference and update probabilities, r; and u; respectively.
Since many results can now be affected by the same update to a ground relation, it
cannot any more be assumed that r;+u;=1. We will however state the following pro-

perty that holds in this case

2 (r;+u,—)=l

e’ i "‘{_I..’.-‘l-‘

” LA P P i - g 7
; . e R e M S Y v IR R B < } W ..
:“J{‘-{‘:} -{'-‘:"-i'& L"v":"-{“u{'-{.‘-(." 2 14':"- PO O S L R L T T R G L, R R L e T ML ¥ T UL

43

The formulas derived above for the case of using the cache are still valid. There is an
additional conctraint that must be imposed here, and that has do with space limita-
tions. This restriction indicates that the total space occupied hy cached res»'ts cannot
be more than €. Given all these parameters we formulate now the problem of c2 a-

ing in the case of Bounded Space.
Let A:IN—={0,1} be an allocation function. A result R; will be cached if

A(1)=1; if A(1)=0, R; will be discarded after it is used. Hence in the lifetime of the

system, result R; will contribute

Ci if A(i)=1
BC:i =\ Nc, it A(i)=0

to the total processirg cost. The opiimal caching policy will be to cache some of the
N objects so that the total cost is minimal and the space required is less than the

allowed fragment on secondary storage. In other words, we seek a function A such

that
N
J) BC; is minimal (C1)
1
subject to the constraint
N .
JJAG) IR < C (C2)
i)

This problem of optimal allocation has been shown to be NP-complet: (see [CHANTT)
for a similar problem). However, almost identical constraints have to be satisfied in

the view indezing problem that Roussopoulos examined in the context of improving

the performance of view based queries [ROUS82a,ROUS82b). In [ROUSS82a), he

N R L L N s A I a A b A A A A A A T A A A A T A A AT o W e T e L

44

defines a state model to formulate the above allocation problem and then gives an A*
algorithm [RICH83] that finds a near-optimal allocation. We will not go here into the
details of that algorithm; the rez - - referred to [ROUS82a] for a rigorous and

detailed presentation of the technique.

The output of the A* algorithm identifies which results are worth keeping in the
cache. This allocation will be used throughout the lifetime of the system. Hence, this
approach is meaningful only in the case where all QUEL fields are materialized in
advance and a decision is made on which of them should be cached. However, that
policy may not be the best to use. Periodically the system may re-run the same algo-
rithm and use statistics acquired during the execution of various queries and updates.
Even for objects not cached, the system may keep some statistics and recompute the

allocation function A so that new results can get a chance to be stored in the cache.

In summary, the above two cases shared the fact that the reference and update
probabilities for the various objects were known in advance. In the most general case,

the values of the above parameters are not known and the system must be able to

dynamically adapt its caching behaviour, so that the contents of the cache always
reflect the most frequently used and/or costly results. We will not present here a spe-
cial algorithm for the case where no statistics are available. The following subsection
discusses that issue in the context of the replacement policies that can be used for the

cache.

3 PRy L L - - " 250 1 Ls Tl e L >\
T e e T R T T L T g N N N C T

D e ey

e ey N Uy e s 3

MR T TS A SRR ™

R R R R REREEEm—m———————

TR R TR RS .=

R

.l ¥ o+ o o N B Tl T ol o " - LS P W " .
',"-('-‘;'\1:":"4":'-"-_ {". G, AR T AL T i o S Ly TR R N R OB R A

45

2.4.3. Replacement Algorithm

The problem of selecting a policy for replacing objects in the cache, is abstractly

formulated as follows:

A state s of the cache is the set of <bjects that are stored in it
<R,R,, * -+ ,R,> along with some statistical information associated with each

R;. We will assume here that this information is

t; The time since R; was last referenced
u; Probability of updating R,
M; Cost of producing R; (materialization)
| R; | Size of R;

and that the cost of writting and readirg an object from the cache is equal to the
size of that object. Let S and R be the set of all possible states and results to
cache, respectively. Then, a replacement policy P, is a function P:SXR—S

that, given a state s for the cache and a newly materialized result R;, decides

a) if R; should be cached, and

b) in case the answer to a) is positive but there is not enough free space
in the cache to accommodate R;, which other result(s) should be discard-
ed to free the space needed.

In operating systems an optimal page buffer replacement policy is one that uses the
whole (past and future) pattern of references to decide on which pages should be
cached (see algorithm OPT in [MATT70]). This algorithm is not practical though,
unless one can predict with high probability the future behaviour of the system. The
closest approximation is the LRU (Least Recently Used) algorithm which selects to dis-

card the object with maximum time since last reference. In the area of database

Le % o P T Lo a7 B W7 T o

B g N,

46

management systems, the same policy can be used in the design-of buffer managers.
DeWitt and Chou give in a recent article [CHOUS85] an analysis of these algorithms in

a database environment.

In our caching problem, an object R; is cached independently of its parameters,
as long as space can be allocated to store R; in the cache. If this is not the case, then
some result(s) must be discarded to free the space needed for storing R;. There are

generally two approaches one can take

a) We can first try to approximate the parameters of Table 2.1 using the statistics
the system has acquired. The sizes | R; | and the materialization costs M; are
given since the objects have been computed already. The update probability u;
is also easy to derive, assuming that the probabilities of updating ground rela-
tions are given. For example, the probability of updating the result of a join
between two ground relations is equal to the sum of the probabilities of updating
each of the two relations. What remains to be provided is the probability of
referencing a result as well as the probability of updating the result, in the case
where the frequencies with which ground relations are updated are not known.
For objects already in the cache, these probabilities can be estimated from the
reference patterns already observed. For new results, one can predict the refer-
ence pattern if the query processing algorithm is known. For example, in the
case of processing a join, if it is known that either nested loops or merge scan will
be used, we can predict the way QUEL fields are accessed, and therefore have a

rough estimate for the needed probabilities.

b R A A A AT L A R T A A R AL S AL S A PR R P LS T A AN AR CL L L LA CR TR TR CR P PO CRA TR LR CA LR AR O

47

Once these values are known, the A* algorithm of the previous subsection can be
run and give a new allocation for the cache. This will provide the system with a
good cache allocation for a limited time interval. Clearly, because the A* algo-
rithm is very expensive to run, one would not like to decide on a mew allocation
each time a new object is materialized. The solution we propose is to run the
algorithm once some threshold is reached. Such a threshold may be a fixed
number of materializations. Another threshold may be the difference between
the values for the statistics used to run the allocation algorithm (i.e. reference
and update probabilities, sizes of results, etc.) and the actual values observed
while the system is running. For instance, if that difference gets above some
prespecified percentage of the original estimates the system may decide to re-run

the A* algorithm.

b) A different approach is to consider the values of given parameters only and try to
approximate the optimal policy with an LRU-like policy. If, for example, we
assume that the materialization cost, the size and the probabilities of referencing
or updating an object are uniformly distributed over all objects, then LRU will
be enough to guarantee a good caching behaviour. The point is that by making
the above assumption the original problem has been reduced to the known page
buffering problem in operating systems. However, in the general case LRU will

not work. In that case, we propose the derivation of some experimental formula

rank (M;,u;.t;, | R; |) which would rank objects according to the values of their
associated parameters, given some weights and scalirc factors. The lowest)

ranked object(s) should be discarded at a point where space is needed. Examples

§

. . ‘ ' o . o . ; e i il 3 e 2 R e, SR R ey e
AR L e A I R B e T R o R S T N o L A B R N T T KT W Tl Ou i G T | R R

48

of rank are

(1) rank (M;,u; t;. | R; 1) = M;
The assumption made here is that objects are very expensive to materialize and
the rest of the parameters are uniformly distributed. Therefore, objects with low

M; values should be discarded to free space for objects with high M; values.

(2) rank(M;u;t;, IR |)= tl.
‘

In this case objects are expected to be frequently referenced and very rarely
updated. Then a pure LRU algorithm based on the times since last reference is a

good choice.

(3) rank(Miugti, | Ri|) = ;l-
If some materialized results are very frequently updated, it may not be worth
caching them or, for the purposes of a replacement policy, should be discarded to
allow other less frequently updated objects be cached.

(4) rank(M;u;t;, | R;|)= |R;|
Small objects should be discarded in case larger ones need be cached.

Trying to generalize rank by combining all four functions we suggest the following

function for rank

1 1
rank (M;,u;t;, | R;|) = ;_—-(wlM,--Huz | R; |)+w3-r- | R; |
)]
This formula is the simplest one that can be devised and incorporates in an easy way
the effects of the various parameters. The specific format was chosen to agree with

the formulas derived during the analysis of section 2.4.2. The first factor is based on

T R b i R e iy e o e

49

the fact that updates require materialization of objects as well as storing the results in
the cache. The second part simply introduces the LRU-like behaviour. How to derive
the weights w,, w, and wy is an interesting open problem and should be attacked

through extensive experimentation.

2.4.4. Checking the Validity of Cached Objects

Cached results of materialized QUEL field eriries may become invalid when the
relations used to compute these results are modified. Checking the validity of the
cached objects amounts to identifying which results are aflected from a given update.

When such a result R; is found to be affected, one of two actions can take place

a) One can simply invalidate the corresponding entry of the cache. The next query
that tries to use the result, will find it invalidated and will have to re-evaluate
the associated query. This is the scheme assumed in the analysis of the previous

subsection.

b) One can use the updates performed to the underlying relations and propagate
them to all cached entries affected by these updates. In this case, some algorithm
must be used which, given an update and the query that was used to derive of a
wrecific result, will provide a set of update operations that will bring the cached
result up to date. Such algorithms are described in various articles where the
same problem 1 attacked in different contexts

[BUNE79,ADIB80,K UNG84,BLAKS8].

% T WL W T W » o J " o0 J PLiE A AT e R A i,y o
G A R P N R R L A A S R TR Y E RS CA TR CACA AR TR R 0 S RS Y P N e e

50

In our environment however, the second approach suffers from two very serious draw-
backs. First, it is the case that between two references to a specific cached result
many updates to underlying relations may be performed. Clearly, for each of these
updates significant effort will be spent doing propagation of the updates. Another pos-
sibility is to log all updates and propagate them at the time a retrieval is performed
(batch update) [ROUS868]. The second drawback is due to the fact that updates may
be propagated to bring up to date entries that may ncver be used in the future. From
the above discussion, it is clear that a good caching scheme will discard these results
and repiace them with others more frequently used which makes any effort to pro-

pagate updates useless.

We take the approach that entries must be brought up to date on demand, that
is, the next time the specific entry is requested in a query. Then the system can either
sncrementally propagate the modifications, assuming that we keep the updates in
some kind of a log [ROUS86], or simply re-evaluate the query. That is an optimiza-
tion question and depends on the specific characteristics of the query and the updates.

We will not attempt here to discuss in more detail these algorithms.

The rest of this subsection discuss briefly the problem of detecting which cached
results are affected by a given set of updates. [STONB8Ba| presents a detailed discus-
sion of the problem and the proposed solutions. The two approaches taken there,
Basic Locking and Predicate Indezing, share the same properties with physical and
predicate locking respectively [GRAYT78,ESWAT76] as used in concurrency control.
Abstractly, a set of tuples is used to produce the result of some query and our goal is

to be able to detect when a given update conflicts with this set. Hence, the similarity

- *
: L o - = " v . s b L Bt oyl
ST E B W 0 VP BV R e G NS Y SRS N T R AR e T T U TR g S R SOLS T NI ol SR S LR AL DS IR RS RSy P TR A e)

51

-with the concurrency control problem.

T L Jo R A 8 A A N R BN e e

In Basic Locking all tuples used in processing a given query are marked with a
special kind of marker which contains the identifier Qid of the query. If an index is

used for accessing the data tuples these markers are set on data records and on the

P s e Ry e St " W S T T

key interval inspected in the index. Index interval locks are required to correctly deal
with insertion of new records (the phantom problem in concurrency control

[ESWA76]). If a new tuple is inserted in one of the relations used to produce the

R =

result of a QUEL field entry, then the collection of markers must be found for the new
tuple. To ascertain what collection of cached entries are affected by the insertion of a
tuple t, one first collects all the markers on ¢ and then determines which of the

| corresponding queries are really affected.

In Predicate Indexing :he cache has a specific organization. A data structure is
built aliowing efficient search of the cache and detection of entries affected by the
insertion of a specific tuple in one of the underlying relations. In [STONSBa], a special
kind of R-tree [GUTT84a] is used for that reason. Using Predicate Indexing implies
no special treatment of insertions to ground relations but a search of the whole R-tree

is required whenever one asks for the cached entries affected by an update.

Perforinance analysis results in [STON88a], show that it is not possible to choose

one implementation to support efficiently any cache based environment. Depeading on
the probability of updating ground relations and the number of cached entries that
overlap (in the sense that their read sets share some tuples from ground relations), the

first or the second approach becomes more efficient. Basic Locking seems the most

]
.
|
i
]
n
]
»
l
]
]
]
r
|
]
s

B Tt e e e e s o e e o e B e e T kA e o Y M ™

53

This last subsection concludes our presentation on caching results of QUEL fields.
A working version of extended INGRES has a very simplified cache which performed
very well in the experiments of [STON85]. POSTGRES [STON86b} will be supported
by a more sophisticated caching scheme which will use LRU for replacement and Basic

Locking for checking the validity of the entries.

2.56. Indexing Results of QUEL Fields
Imagine a query that is frequently asked and has the following form
retrieve (EMP.name) where EMP hobbies.average < constant

One would most probably like to build an index on EMP hobbies.average in the
same way indexes are built on simple attributes. However, there is a difficulty in
using conventional indexing schemes to index results of QUEL fields. This would
require the materialization of all entries in the QUEL field ar, mor:2ver. mat2sializa-
tion must be done when a new tupi- with a QUEI, icid 18 inserted. "or exam it u «
new employee tuple is inser »d in <he EMP relation the kobbies field must be processed,
the result cached if possibl« and the index on EMP hobbies average must be updated
with the new values. This indexing scheme suffers from two serious drawbacks. First,
insertion time increases significantly since it is no longer a simple addition of a tuple in
a relation, but the execution of (possibly) many queries as well, the ones stored in
QUEL fields. In particular, in the case of queries involving clauses with multi-dot
expressions, response time may increase drastically. Second, by precomputing QUEL
field entries the system materializes all objects and therefore spends a lot of time (and

possibly space in the cache) in processing field entries tha. may be never referenced in

. e e et B i o s o v b A i e Bk £ e i Gl
T Oy T T YR T { T i G A e T e Vo) A P e S e e N T o L L T e e el

52

promising because of its ease of implementation, performance in simple environments,
and extensibility to join predicates. Analysis of these schemes and investigation of

other extensions are a topic of future research.

2.4.5. Indexing the Cache

As a final issue in the caching problem we touch briefly .he problem of indexing
the cache. By “indexing” we mean an efficient way to detect if for a given query Q
there is a cached result R that is the answer to Q. The problem therefore is to search
for Query_expression values in the cache which are identical to Q, up to renaming
of tuple variables used. In other words, the expressions are identical once we substi-
tute the tuple variables with the names of relations they range over. Checking for
identical queries is rather straightforward. It involves transforming the query to be
checked into the vanonical form that we assumed in subsection 2.4.1 and then a simple
syntactic matching. But, clearly one does not want to compare all entries of the cache
with @. It is desirable to quickly reject all of the entries that do not relate at all to
the given query. We therefore associate with each entry a signature that contains
high level and easy to check information about the query. The relations involved and
the fields that appear in the qualification and the target list of the queries are used to
build the signature. If the signatures of a cached entry and the given query match we
can then continue with a more detailed checking, the syntactic comparison of the two
canonical representations. To have quick comparison of the signatures themselves, a

hash table where hashed representations of the signatures are stored can be used.

> o) -y BTN 2 T T R B T | T S L i B S e T S T (]t 2 S T e
R AT T e W A e R TR T TR T T A TR TN e T L e A T Lt e T e T T e W e R L LT T S T LT L v

55

name |salary | mgr bobbies =J

Riggs 20 Smith | retrieve (SOFTBALL.position,SOFTBALL. average)
where SOFTBALL name = "Riggs"

Jones 30 Smith

tatcher 4
pitcher

Felps 40 Moore

catcher
pitcher

Assume also that there is a unique tuple identifier TID associated with each tuple in
the EMP relation, with value 100,101 and 102 for the first, second and third tuple
respectively. These values are stored in the EMP relation but are not visible to the
user. The results of the second and third tuples have been materialized and stored in
the cache. That is indicated in the above relation by representing them with small
relations stored in the hobbies field of EMP. Suppose the query that has caused that

materialization was

retrieve (EMP name)
where EMP.salary > 20
aad EMP hobbies.average < 6

and was processed by scanning EMP and materializing only the hobbics fields of

employees with salary more than 20K. The index on EMP hobbies average was of

&
..... » VAN P
G CETR C ERAP (N SaPE P CE RL PNCP R O 0 R LR AL T i N R o B b L g M AN AT P e U 10 R A S R LA VTS S

AR TG T N S L el Tt WY S S e Bl B A W g G

54

the future.

Another proposal that overcomes the above problems is presented here. The
main idea is to have the index reflect only values that have been seen in the past and
not all possible ones. Through this scheme, it is expected to achieve better perfor-
mance in cases where the same set of queries is frequently asked. We are also willing
to pay some penalty to update the index in the case where the set of queries changes.
Given a field, the structure to be described, contains information or. all values of that
field that appear solely in results of materialized entries. These results do not have to
exist in the cache; they can exist in the index even if the object that included them has
been flushed out of the ¢ .. In these cases, the index simply shows that some QUEL
fields, even if not curren y materialized, can produce the specific values stored. More-
over, some extra information is associated with the index; information that character-
izes the class of tuples that are indexed. In summary, the indexing scheme proposed is

a partial indez in the sense that it indexes only a part of the relation.

Let us use an example ‘o motivate the discussion on partial indexes that follows.
The relation EMP (name,salary,mgr.lobbies) of section 2.2 has an index defined on

EMP . hobbies average. The following tuples are currently in EMP

X5 X K ¥ 85 8 >

-f?‘-f:i;'.?1’?)’?-":‘-)'.‘-‘:’“:1.‘;'.-t‘:'hf'.":!':(:‘":"A- fl(’{‘:'(l‘(;.ﬂ S R T P TR T, B e I Al e o, A OO T L Sl BT e et e e

o

56

no use because no entries were materialized before the above query was executed.

However, after the execution of the query the index was updated to

salary > 20

average | TID

4 101
4 | 102
5 102
8 101

Notice that the above index differs in two ways from conventional indexes. First,
there may be more than one average values for the same TID value. This cacnot be
true in conventional relations because all fields carry a single value (First Normal
Form [ULLMS82]). Second, there is a predicate associated with the index (salary >
20). This predicate uses only non-QUEL fields and is a simple way to identify the
kind of tuples indexed by the given index. That predicate is also used to dgcide if an
index is useful in answering a given query. For example, a future query that includes
a restriction on EMP hobbies average and references employees with salaries more
than zK, with z>20, can use the index to avoid a full scan of EMP. However, for
z <20 the relation must be scanned and the entries with salary values under 20 will be
materialized. As a side effect, the index table and the corresponding predicate will be

updated.

> » ~~

TR N T R Y T e L Ly T I R Lt i Gy T e
B T T T A b R T T e e B T o o s b T L T e oo e S D]

ol T T e e e T B T e

=

#
-

S5 i

- *‘P‘_’j
[
.ﬁ,‘;(

.
, ™ - A -, ' ’!

. ‘ ﬂ' ‘

LN A L i\ﬂ’

Sr

T ————

57

Let us now describe the operation of a partial index. A partial index is a pair

(QUAL,INDX), where QUAL is a disjunction of conjunctive one-variable selection

clauses and INDY is a conventional index structure. We will say that a qualification

QUAL, covers another qualification QUAL, if the set of tuples satisfying QUAL, is a

subset of the set of tuples satisfying QUAL,, for any instance of the database. In any

other case we will say that QUAL, is not useful to QUAL,.

When au index is

requested by a user on a field F of a QUEL field result, a pair (QUAL,INDX) is allo-

cated with initial values QUAL=false and INDX=@. Then depending on the opera-

tion

LD

performed on the relation, the following actions will take place.
Queries that use Fin an one-variable clause in the quali fication:

Let QUAL™ be the part of the qualification of the query that has no references to
QUEL fields 2ac is composed only from one-variable clauses on the relation that
the index is built on. Then, if the predicate QUAL which is associated with the
index covers QUAL™, the query processor may consider using the available index
on F for answering the query. If QUAL is not useful to QUAL™, then the query
cannot use the index on F. That index can be used to give only the tuples satis-
fying QUAL while the rest of the requested tuples must be retrieved from the
relation by other means. However, in that case, once the QUEL field entries are

materialized, the vaiues of F' are used to update the index and the asscciated

qualification QUAL is changed to (QUAL \y QUAL™).

Queries that do not use F in an onc-variable clause in the qualification but

materialize the QUEL field that contains F:

> e R e A ™ OiT B lT TS I Mg ar T PRSI i n Py T o
At ‘ . »')U"‘ B e Ty S N R A R G S G TR

P -

58

In this case we take the steps followed in the second case above where the index

is updated after the materializations are performed.
Insertion of a new tuple sn the sndezed relation:

Given a new tuple to be inserted in the indexed relation, we check if this tuple
satisfies QUAL and if so. the corresponding QUEL field is materialized and the
index is updated. Otherwise, the index remains as is. In the former case, we
may materialize entries that show no indication if they will be used in the future.
Although this was one of our arguments against pre-materialization of all entries
in the beginning of the section, there seems to be no easy way to get around that
problem. If the predicate QUAL is satisfied it is required that the F value of the
new tuple be in the index. Another approach, would be to change QUAL to
(QUAL A (not QUAL™), where QUAL™ is a qualification that describes the tuple
inserted and can be built according to the above discussion. This way we avoid
nserting the new values in the index. Although this solution is conceptually
correct, it is very hard to check whether QUAL covers other predicates if nega-

tion is allowed [ROSE80).
Deletion of a tuple from the sndezed relation

In case of deleting a tuple with tuple identifier TID, the entries of the index that

contain the same T/D value are also deleted. The predicate QUAL can then be
changed to reflect the fact that the specific value is not any more represented in
the index by introducing negative clauses in QUAL. Because of the above men-

tioned efficiency problems, we propose to leave the qualificatio ¢art unchanged

R i\‘?‘k"@u\\\}}f"}“}}'}-1*3-?"}'}'}1‘*3«"3«"3-7‘*}‘.\.5}"!.»‘,')(“}V)J"Dﬁ'n}(*}“ﬂﬁ.k‘iﬁ}'}'&“}“ﬂ}?.ru"}n'r}'**'..-'?.p"-.»b‘rﬁ..‘».‘-.»“}"m’*}*.x"‘.-'r.r‘-_-u“;—‘h'.‘n'r,j

R R R R R R A R R R R R R T R R R RN

59

and simply allow incoming new tuples to be inserted in the index ever in the case
they match deleted values. Hence, the predicate QUAL is only “increasing” by

means of the number of tuples it covers.

Updates to ground relations may also affect the contents of a partial index. In the
case where these updates are affecting results of QUEL fields, changes may have to
occur in the index as well. Using a validation scheme similar to the one of the previ-
ous section, we can check which index entries must be changed after a given update to

a ground relation.

The above are the only actions required to keep an index up to date. Clearly,
the content of the index reflects the dynamics of the system by providing information
only on data frequently asked. In that sense, partial indexing is also some kind of ses-
sion support [KUCKB88], wiere 4 user starts up a session and depending on the queries
be/she uses, the system may create secondary structures to speed up common opera-
tions. Another comment is that the predicate QUAL associated with the index, may at
some point get extremely complicated because of the number of disjuncts it may con-
tain. At such a pcint the system may use some statistics to estimate the percentage of
the tuples that have already been indexed. If that is above a predefined threshc;ld (e.g.
80%), the system may select to index all QUEL entries. QUAL is then changed to
"true” and all incoming new tuples will have to be indexed. We then arrive in the
situation that was discussed in the beginning of the section where all materialized

objects are guaranteed to have an entry in the index table.

LR TR RS DA A S PR ee 16 N B0 PRGN AN W R I L Do Ll W0 N T S0 RN L T Bl T B R TV R T 00 B0 AT LS RN T L LA 1Py o T T W

60

Finally, we would like to mention another possible use of partial indexes. Many
times users issue all their queries through specific views that they have defined over
ground relations. Users are not allowed to keep materialized versions of the views in
the system because of its high space cost, but they still would like queries to execute
fast. Indexes on ground relations will be helpful for that. However, these indexes con-
tain more information than what these users need, namely an index only on the result
of the view materialization. A partial index seems like a clean solution to that prob-
lem. The QUAL part will be static since it will be the predicate that defines the view,
but querying and updating will be performed under the guidelines outlined above.
This idea can also be extended to normal relations, since these are special cases of
views. Using partial indexes better performance can be achicved by allowing ihe index

to keep information only on frequently accessed data.

2.6. Summary

This chapter first presented the language QUEL+ and its capabilities. Then, an
extended decomposition algorithm based on the INGRES query processing algorithm
was proposed. The extensions made were mainly due to the fact that one new opera-
tion was introduced, namely the materialization of QUEL fields. We showed how a
general algorithm can be used to take under account the fact that materialization is
very expensive and the number of times it is performed should be minimized. Also,
some special case strategies were discussed that aim to reduciug the sizes of material-

ized results.

s DR T T A T N PO N P P T Pl s, T 0 e T, T Y G i S I T T T B D e T e IR s D T A L T i | T e Y e e T N e s e e
:‘:‘C{{{v'n{';“]:\"\\{"ﬂ{\‘:':\:\:s"-{‘w‘\h.‘h‘{'\"\.\{".{'&{ *\1‘;‘-' .{‘:’\‘ ‘-{\.'rﬁg .\'\‘4. \'\.41_\-1.‘\ L W \f’::“\-‘- ’P»E" x‘h-_"v\."‘\ LI WA TR P Pl P o W Ao S T T o B e

61

Caching was then proposed as a way to avoid evaluating the queries found in
QULL fields more than once. Several issues associated with caching were discussed.
Among others, replacement policies, invalidation algorithms and policies that decide
which objects to cache were examined in detail. The discussion shows that caching is
essential in the QUEL+ environment and various solutions to the above problems can
be derived once the cached object characteristics are known. How to compute these
characteristics and how to adapt the system caching policies according to these statis-

tics is a very interesting open problem.

Lastly, a new indexing technique, Partial Indexing, was proposed to provide
efficient access to results of QUEL field materializations. A partial index is a combina-
tion of both a conventional index table and a predicate. Predicates characterize the
set of tuples that can be accessed through the corresponding index tables. We also
described how the system can check if an index is useful in processing a given query
and what are the necessary operations to maintain a partial index when queries and

updates are performed.

‘

[

s
D T O T T R e P e o N o N O o T S R By T A T T A SN NS P O O o P BTt o AN IO B0

CHAPTER 3

OPTIMIZING THE EXECUTION OF PROCEDURES

3.1. Introduction

The previous chapter introduced the language QUEL+ and suggested some ways
to speed up query processing in the case where the commands stored in QUEL fields
are exclusively queries (or retrieve commands in INGRES). This chapter is con-
cerned with the more general problem of procedure optimization in the QUEL+
environment. To motivate the discussion that follows, we give an example drawn

from [KUNG84).

Suppose that we are given a set of algorithms that can be used to solve the Shor-
test Path (SP) problem on a grid representation of a map. These algorithms find a
sequence of points in the grid starting from a given point S (source) and ending to
another point D (destination) such that the total cost of traveling through these
points is minimal. This set of algorithms will be represented through the use of a rela-
tion |

ALGORITHMS (alg_id,alg_type,code)

where alg_id is a unique identifier, alg_type indicates the general class that the given
algorithm belongs to (e.g. Dynamic Programming [LARS78], Branch and Bound
(RICH83], etc.) and code is a field of type QUEL that is used to store the actual set of

database commands (procedure) that implement the algorithm. Therefore the form of

L T O S S T o N L T L e L T MmN L e el S T I T L e N O I e L U R N e e e e Lt O L

B s e T] M o e s m m L m I e mmensoom o Adp iy ———tor g

T S —— R T T w T e N a T e R TR MW AER e AR T Rl AN e B W

I ol B o e e B T T R T O RO R O R R R R R R R R R R R m—..

Al

63

the relation ALGORITHMS will be

alg_id alg_type code

10 Dynamic Progr. code lipe 1
code line 2

..........

15 Dynamic Progr. code line 1

20 Branch and Bound code line 1

...............

13
To give an example of an entry in the code column of the above relation, we will

present a database procedure that solves the Shortest Path problem using an algo-

rithm based on Dynamic Programming. Assume the existence of a relation
FEASIBLE (source, dest,cost) that provides the cost of getting from a node source
to a neighbor node dest. Another relation STATES (dest, cost,open) is also used to
record the cost of getting from the initial source point S to any already visited point
dest in the map. The third field open indicates if the corresponding dest node has
been visited in the past. If open=0, the algorithm will avoid visiting that node again.
Based on these relations, the following is a database procedure that finds the shortest

path between two points S and D of the map.

retrieve into STATES (dest = S, cost = 0, open = 1)

range of s,t is STATES
range of f 1s FEASIBLE

O U AT A IO T A L T R e T A N e T J3 L RLAG % e 3% B JFh BPE RS R BaF ST B S g N a0 A S T N AR el Y YL N R R Y

64

execute*
{
append to STATES (dest = f dest,
cost = f.cost+s.cost,
open = 2)

vhere s dest = f source and s.open = 1

delete s
vhere s dest = t dest and s cost > t cost
or s.cost > t.cost and t . dest = D

replace s (open = s open ~ 1)
vhere s.open > 1

The details of the above algorithm and its particular implementation are further dis-
cussed in [KUNG84]. Suppose that the above is stored as the algorithm with unique
identifier 15. As mentioned in the previous chapter, a user can request the execution

of this specific algorithm, using the QUEL+ command

execute (ALGORITHMS.code)
where ALGORITHMS alg_type = "Dynamic Progr."
and ALGORITHMS .alg_id = 15

How to pass parameters and other issues that deal with the details of fully supporting
database procedures will not be explored here. In [STON85] and [STON86b], Stone-

braker et al. give an extensive analysis of these problems and suggest solutions.

Our focus here will be the problem of efficiently processing these QUEL fields.
The system may consult the given set of commands and process them in a way that
minimizes the total execution cost. Relational DBMSs were made efficient largely
through the use of sophisticated optimization algorithms ((WONG?76,SELI79]). This
chapter suggests extensions to these optimization algorithms for the new extended

query language QUEL+. Although QUEL+ is used as an example, the proposed

. R n T AR R e arna g i e . : = g o " R g
[R T I L e T L N R o T 0 (T £ AT A R R T N L T T A S R R SR R R S RN P B D S AR L

R N e

65

principles should be applicable to a wide variety of extended languages.

Given a set of database commands, it is a common practice in conventional
DBMSs to optimize each command separately. To “optimize” a command means to
choose among the various ways of executing the command. For example, there may
be a choice of indexes to use, or a choice of strategies for executing a relational opera-
tor such as the join. We extend these ideas here for the case of multiple command

processing by discussing interquery optimization techniques.

This chapter is a more detailed presentation of the ideas presented in [SELL85)
and is organized as follows: In the next section we define the notion of an optimization
unit. Then, in sections 3.3 and 3.4 various optimization tactics for use by a QUEL+
optimizer are described. Each of these tactics is related to corresponding techniques
from some other area, in particular compiler construction and query optimization.
Section 3.5 presents two new transformations, each of which transforms a sequence of
QUEL+ commands into a single replace command. Finally, concluding the presenta-

tion of this chapter, section 3.6 summarizes the ideas discussed.

3.2. What is Optimization?

Optimization in database systems means to choose among the various ways of
executing a commaid. In this section we will examine what optimization will mean
for extended languzges like QUEL+. We motivate our definition of optimization by

reviewing some QUEL+ constructs.

The execute command, as presented in the previous chapter, gives recursive

power to QUEL by allowing the system to execute relation fields. It is very useful in

e e S e o L U N e T o e i e e i G o T o L N e T N LT L e T A T WA R T T T e W R TR e e

LEEA AT GOF LR e
L AT I G SRR A

66

its execute* form, where the given sequence of QUEL+ commands is executed
repeatedly, until the database does not change. Generally, each new command of
QUEL+ represents a sequence of one or more simple QUEL commands. This is also
true in the other extended database languages mentioned in the introductory chapter.
For example, in Guttman's thesis [GUTT84b], the new construct is the repetitive exe-
cution operator (*) of QUEL+. Also in GEM [ZANI83], processing of a multi-dot
query has been implemented by translating it to QUEL queries [TSUR84). Since a
command in an extended language typically represents several commands in a classical
database language, this section proposes that a QUEL+ query optimizer operates on a
sequence of commands rather than the traditional approach of optimizing a single

command at a time.

As a first attempt at designing a QUEL+ optimizer, one could merely optimize
each corresponding QUEL command separately, using an existing QUEL optimizer.
For example, a replace* command would be processed by generating one replace
command, optimizing and executing it, and continuing until the execution of the
replace command does not change the datahase. We use the term optimizatson unst
to refer to the unit acted on by the optimizer. Thus in QUEL the optimization unit is
a single QUEL command. We prupose that for QUEL+ the optimization unit will be
a single QUEL+ command, including even an execute or execute* operation.
Therefore, the optimization unit has been effectively made equal to any sequence of
QUEL+ commands, for any such sequence can be the argument of an execute com-
mand. In fact, if the programmer wishes, he/she can code an entire QUEL+ program

(containing no programming language co<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>